
Using Language to Gain Control of Enterprise Architecture
Gary F. Simons, Leon A. Kappelman, & John A. Zachman

Prepublication draft of 22 June 2007. Cite published version as:

In Kappelman, Leon A., editor. 2010. The SIM Guide to Enterprise

Architecture, pages 127-146. Boca Raton: CRC Press.

Gary F. Simons, Ph.D.
Associate VP for Academic Affairs

SIL International
7500 W. Camp Wisdom Rd. Dallas, TX 75236

Phone: 972.708.7487, Fax: 972 708.7546
gary_simons@sil.org

http://www.sil.org/~simonsg/

Leon A. Kappelman, Ph.D. (CONTACT AUTHOR)

Professor of Information Systems
Co-chair, SIM Enterprise Architecture Working Group

College of Business, University of North Texas
P.O. Box 305249, Denton, Texas 76203

Voice: 940-565-4698 Fax: 940-565-4935
Email: kapp@unt.edu Mobile: 940-367-0405

http://courses.unt.edu/kappelman/

John A. Zachman
Zachman International

2222 Foothill Blvd., Suite 337
La Canada, CA 91011 U.S.A.
818-244-3763 (Phone and Fax)

Zachman Framework Associates
Toronto, Ontario, Canada

416-930-4625 (Phone)
John@ZachmanInternational.com

http://www.ZachmanInternational.com

Copyright © 2007 The Authors

Using Language to Gain Control of Enterprise Architecture

On the Verge of Major Business Re-Engineering

“Insanity is doing the same thing over and over again and
expecting different results.” — Albert Einstein

Seven years ago the senior leadership at SIL International (see Chart 1), a not-for-profit

whose purpose is to facilitate language-based development among the peoples of the world,

determined that it was time to build an

integrated Enterprise Information System.

There were three precipitating factors:

mission critical IT systems were almost

twenty years old and on the verge of

obsolescence, their landscape was dotted

with dozens of silo systems, and

commitments to new strategic directions

demanded significant business re-

engineering.

John Zachman made a site visit to help

launch an enterprise architecture initiative.

SIL learned from him that architecture

(see Chart 2) is the age-old discipline that

makes it possible for humankind to construct complex systems. If an organization wants to build

something that is highly complex in such a way that what the builder builds is aligned with what

the owner actually has in mind (whether it be a skyscraper, an airplane, or an information

system), then it needs a designer to create a complete set of blueprints to which all the

stakeholders agree and against which all will work.

Chart 1: What is SIL International?
 SIL is a not-for-profit, academic, faith-

based organization committed to the
empowerment of indigenous
communities worldwide through
language development efforts.

 SIL is focused on the role of language
and culture in effective development.

 By facilitating language-based
development, SIL International serves
the peoples of the world through
research, translation, and literacy.

 Since its founding in 1934 SIL has
worked in 1,800 languages, in 70
countries, and grown to a team of 5,000
from 60 countries.

Perhaps even more important in this age of increasingly rapid change is that architecture is

the discipline that makes it possible for an organization to maintain a highly complex system

once it is operational. Before the functioning building or airplane or information system can

safely, efficiently, and effectively be changed, it is necessary for the owner, designer, and builder

1

to first make the changes on the blueprints and come to agreement that the proposed changes will

achieve what the owner wants and can be implemented by the builder.

Nothing So Practical As Good Theory

“In the case of inform ation and communication technologies …
investments in associated intangible capital … are quite important
indeed.” — Federal Reserve Chairman Ben Bernanke (MIT
commencement, June 2006)

The Zachman Framework for

Enterprise Architecture (see Chart 3

and Figure 1) seemed to offer a good

theory for what the blueprints of an

enterprise should look like: primitive

models (see Chart 4) in each of the

cells formed by the intersection of

rows for stakeholder perspectives (e.g.,

owner, designer, builder) with

columns for interrogative abstractions

(i.e., what, how, where, who, when,

why).

As the SIL leadership set out to re-

engineer the organization, they were

inspired by Zachman’s vision of an

enterprise under control through a

complete set of aligned blueprints. In

an application of social psychologist

Kurt Lewin’s famous maxim, “There is nothing so practical as a good theory,” they saw the

practical value of the Zachman Framework and adopted it as their working theory. Conversely,

there is nothing so good for the development of theory as good application in practice, and

Zachman with his associate Stan Locke entered into a relationship with SIL to help SIL put

theory into practice while SIL helped them refine theory through practice. Following Kotter’s

Chart 2: What is Architecture?
Architecture is the set of descriptive

representations that are required in order to create an
object. Architecture is also the baseline for changing
the object once it is created, IF you retain the
descriptive representations used in its creation and IF
you ensure that the descriptive representations are
always maintained consistent with the created object
(i.e., the instantiation). The Roman Coliseum is not
architecture, it is the result of architecture, an
implementation.

If the object you are trying to create is so simple
that you can see it at a glance in its entirety and
remember all at one time how all of its components fit
together at excruciating levels of detail, you don’t
need architecture. You can “wing it” and see if it
works. It is only when the object you are trying to
create is complex to the extent that you can’t see and
remember all the details of the implementation at
once, and only when you want to accommodate on-
going change to the instantiated object, that
architecture is imperative.

(Zachman 1987, 2001, 2007)

2

(1996) eight-stage process for managing major change, SIL formed a VP-level guidance team

chaired by the Associate Executive Director for Administration. Trained and advised by Locke,

this team has met regularly since 2000 to guide the process of architecting a re-engineered

enterprise.

Chart 3: What is the Framework for Enterprise Architecture?
The Framework for Enterprise Architecture (the “Zachman Framework”, see Figure 1) is

simply a schema, a classification scheme for descriptive representations of objects with enterprise
names on the descriptions. It is represented in two dimensions as a table or matrix consisting of
six columns and five rows. The schema is “normalized” so that no one fact can show up in more
than one cell.

The columns (nicknamed “one” through “six” from left to right) answer the six interrogatives
— what, how, where, who, when, and why, respectively — and correspond to the universal set of
descriptive representations for describing any and all complex industrial products (industry-
specific variations in terminology notwithstanding): Bills of Materials, Functional Specifications,
Drawings, Operating Instructions, Timing Diagrams, and Design Objectives. These are termed
“abstractions” in the sense that out of the total set of relevant descriptive characteristics of the
object, we “abstract” one of them at a time for producing a formal, explicit, description.

The rows (nicknamed from top to bottom “one” through “five”) represent the set of
descriptions labeled “perspectives” in the sense that each abstraction is created for different
audiences: visionaries or planners, executives or owners, architects or designers, engineers or
builders, and implementers or sub-contractors respectively. Each of the six abstractions has five
different manifestations depending upon the perspective of the intended audience for whom it is
created. These are the industrial product equivalents of Scoping Boundaries (“Concepts
Package”), Requirements, Schematics (Engineering descriptions), Blueprints (Manufacturing
Engineering descriptions), and Tooling configurations; and these correspond to the enterprise
equivalents of boundary or scope, business model, logical model, physical or technology model,
and tooling configurations.

Enterprise Architecture is the total set of intersections between the abstractions and the
perspectives that constitutes the total set of descriptive representations relevant for describing an
enterprise: And the ENTERPRISE itself is the implementation, the instantiation, the end result of
doing Enterprise Architecture, and is depicted in the framework as row six.

(Zachman 1987, 2001, 2007; Zachman & Sowa 1992)

Architecture Out of Control

“The problem with communication ... is the illusion that it has been
accomplished.” — George Bernard Shaw

SIL enjoyed excellent buy-in and participation by senior leadership and IT staff, and found

that Zachman’s framework was a powerful tool for helping conceptualize what they were doing.

But SIL also found that they lacked the tools to deliver all the blueprints. Only in Zachman’s

3

leftmost column one of the framework (i.e., data) did they succeed in creating formal blueprints.

The entity-relationship diagrams (Chen, 1976) commonly used by database designers are

compatible with Zachman’s notion of a primitive thing-relationship-thing model. Thus SIL was

able to achieve alignment and control in column one by using a popular entity-relationship

modeling tool. But SIL found nothing comparable for the other five columns (process, location,

organization, timing, and motivation).

Figure 1: The Zachman Framework for Enterprise Architecture

e.g. DATA

ENTERPRISE ARCHITECTURE - A FRAMEWORK

Builder

SCOPE
(CONTEXTUAL)

MODEL
(CONCEPTUAL)

ENTERPRISE

Designer

SYSTEM
MODEL
(LOGICAL)

TECHNOLOGY
MODEL
(PHYSICAL)

DETAILED
REPRESEN-
 TATIONS
(OUT-OF-
 CONTEXT)

Sub-
Contractor

FUNCTIONING
ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.
Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity
Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity
Reln = Business Relationship

List of Things Important
to the Business

ENTITY = Class of
Business Thing

List of Processes the
Business Performs

Function = Class of
Business Process

e.g. Application Architecture

I/O = User Views
Proc .= Application Function

e.g. System Design

I/O = Data Elements/Sets
Proc.= Computer Function

e.g. Program

I/O = Control Block
Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process
I/O = Business Resources

List of Locations in which
 the Business Operates

Node = Major Business
Location

e.g. Business Logistics
 System

Node = Business Location
Link = Business Linkage

e.g. Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. Technology Architecture

Node = Hardware/System
Software

Link = Line Specifications

e.g. Network Architecture

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
MODEL

(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF

CONTEXT)

Sub-
Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition
Means = Step

e.g. Rule Design

End = Condition
Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective
Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle
Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event
Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit
Work = Work Product

e.g. Human Interface

People = Role
Work = Deliverable

e.g. Presentation Architecture

People = User
Work = Screen Format
e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

John A. Zachman, Zachman International (810) 231-0531

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY
ENTERPRISE

e.g. Business Plan

TM

THE ENTERPRISE INSTANTIATION

THE ENTERPRISE ARCHITECTURE

e.g. DATA

ENTERPRISE ARCHITECTURE - A FRAMEWORK

Builder

SCOPE
(CONTEXTUAL)

MODEL
(CONCEPTUAL)

ENTERPRISE

Designer

SYSTEM
MODEL
(LOGICAL)

TECHNOLOGY
MODEL
(PHYSICAL)

DETAILED
REPRESEN-
 TATIONS
(OUT-OF-
 CONTEXT)

Sub-
Contractor

FUNCTIONING
ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.
Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity
Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity
Reln = Business Relationship

List of Things Important
to the Business

ENTITY = Class of
Business Thing

List of Processes the
Business Performs

Function = Class of
Business Process

e.g. Application Architecture

I/O = User Views
Proc .= Application Function

e.g. System Design

I/O = Data Elements/Sets
Proc.= Computer Function

e.g. Program

I/O = Control Block
Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process
I/O = Business Resources

List of Locations in which
 the Business Operates

Node = Major Business
Location

e.g. Business Logistics
 System

Node = Business Location
Link = Business Linkage

e.g. Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. Technology Architecture

Node = Hardware/System
Software

Link = Line Specifications

e.g. Network Architecture

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
MODEL

(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF

CONTEXT)

Sub-
Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition
Means = Step

e.g. Rule Design

End = Condition
Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective
Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle
Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event
Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit
Work = Work Product

e.g. Human Interface

People = Role
Work = Deliverable

e.g. Presentation Architecture

People = User
Work = Screen Format
e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

John A. Zachman, Zachman International (810) 231-0531

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY
ENTERPRISE

e.g. Business Plan

TM

THE ENTERPRISE INSTANTIATION

THE ENTERPRISE ARCHITECTURE

It turns out that existing modeling techniques, although useful for other purposes, were not

well suited since they did not produce primitive models for the single normalized cells of

Zachman’s framework. Rather, they produced composite models combining elements from

multiple rows or columns of the framework. An obvious alternative would be to use a general

4

drawing program to simply draw the

models. SIL tried this, but it did not

work. Unlike the entity-relationship

tool which was inherently compatible

with the Zachman metamodel for

column one and thus could not

generate anything but a compatible

model no matter who used it, a general

drawing program is unconstrained and

cannot guarantee conformity with the

framework or consistency between

practitioners.

Another advantage of the entity-

relationship tool was that it is based on

a single underlying knowledge

structure that kept the owner, designer,

and builder views of the blueprints in

alignment. With the general drawing

tool, however, once drawings were

created, it was virtually impossible to

keep them maintained and aligned. In

order to give guidance to system

builders, some models were described in documents and spreadsheets rather than diagrams, but

these were similarly unconstrained and subject to all the same shortcomings. For the lack of

tools to handle the models in columns two through six, five sixths of SIL’s architecture was out

of control.

Chart 4: Primitive and Composite Models: Why
things go bump in the night.

A “primitive” model is a model in one variable—
the combination of one abstraction with one
perspective — that is an artifact specific to one cell of
the Zachman Framework. It is the raw material for
doing engineering and architecture.

In contrast, a “composite” model is comprised of
more than one abstraction and/or more than one
perspective. Implementations are the instantiation of
composite, multi-variable models. Implementations
are manufacturing, the creation of the end result. An
instantiation, by definition is a composite. An
enterprise, an information system, and a computer
program are instantiations and therefore composites.

The question turns out to be, how did you create
the implementation instance? Was it engineered
(architected) from primitive models or did you simply
create the implementation ad hoc (i.e., it was
implemented but NOT architected with primitives)? If
you are not creating “enterprise-wide” primitives, you
risk creating implementations that will not integrate
into the enterprise as a whole. You can manufacture
parts of the whole iteratively and incrementally;
however, they must be engineered to fit together or
they are not likely to fit together (be aligned or easily
integrated). Enterprise-wide integration and
alignment do not happen by accident. They must be
engineered (architected).

(Zachman 1987, 2001, 2007)

Enterprise Architecture as a Language Problem

“In the beginning was the Word.” — John 1:1 (King James Bible)

Why didn’t the drawing approach work? Modeling is about expressing ideas, not about

drawing pictures. Thus the solution to the modeling problem is even older than architecture —

5

the age-old discipline that makes it possible for humans to express ideas with precision is

language. Language is the source of our ability to create, our power to wield ideas, and our

freedom to build a better future. Ironically, language achieves this freedom by conventionalizing

a strong set of constraints on how words and sentences can be formed. Paradoxically, language

uses constraints to unleash freedom of expression. Consider that in any one language all the

possible speech sounds are constrained to a relatively small subset that are actually used, syllable

patterns constrain the combinations of sounds that could possibly be words, conventional

associations of meaning constrain which of those sequences actually are words, and rules of

grammar constrain the order in which words combine to express larger thoughts.

By analogy, in order to unleash the creativity, power, and freedom that are the promise of

enterprise architecture, an enterprise needs to employ a constrained language for enterprise

modeling. The metamodels of the Zachman Framework are too generic to support detailed

engineering. This is by design since the framework is a classification system, not a

methodology. In order to develop a methodology appropriate for its own use, an enterprise

needs to adapt the framework to its specific context by adding both detail and constraint to

Zachman’s generic standard for enterprise architecture. The Enterprise Architecture Standards

(Zachman, 2006) define the notion of an elaboration of the framework. The allowed elaborations

are:

● Alias a standard thing or relationship.

● Add named subtypes of standard things and relationships.

● Name the supported integrations between columns.

● Add named attributes to a type of thing or relationship or integration.

Such elaborations of the metamodels do not violate the standard framework as long as they

follow a dumb-down rule that states, “When the elaborations are backed out of an elaborated

model, the result must be a model that conforms to the standard metamodel.”

GEM: A Language for Enterprise Modeling

“Obedience to a law which we prescribe to ourselves is liberty.”
— Jean-Jacques Rousseau (The Social Contract, 1762)

To gain control of their enterprise architecture SIL created GEM — a system for Generic

Enterprise Modeling. The complete system consists of a methodology, a repository, and a

6

workbench, but at the center of all these is a language that is formally an elaboration of the

Zachman Framework metamodel as defined in the Enterprise Architecture Standards (Zachman,

2006).

The GEM language is implemented as an application of XML. By analogy to a

programming language, the architect writes XML source code to express the semantics (owner

view) and logic (designer view) of a system — including things, relationships, integrations,

transformations, added detail, and prose definitions. The system compiles the XML source into

the graphic primitive models for each cell of the framework. The system also compiles the XML

source into “textual models” for each cell — HTML documents that provide human-readable

descriptions.

For example, Figure 2 shows a fragment from the owner-level process model (that is, the

intersection of Row Two and

Column Two) for the subsystem that

maintains and produces Ethnologue:

Languages of the World (Gordon,

2005). The Ethnologue is a 1,272-

page reference book published by

SIL that catalogs all known

languages of the present-day world.

Now in its fifteenth edition, the

Ethnologue identifies 6,912 living

languages, both spoken and signed.

In the GEM language, each type

of thing and relationship used in the

primitive thing-relationship-thing

models has its own XML element.

For example, the fragment in Figure

2 illustrates two kinds of things in

the owner-level process model, <inventory> representing a process for maintaining an

inventory of data entities and <publication> representing a process for producing a

publication. These are two kinds of processes that recur in SIL’s enterprise, so Zachman’s

Figure 2: An example of GEM language source code

<columnTwo>
 <businessProcesses>
 <inventory id=”c2.WorldLang”>
 <name>World Language Inventory</name>
 <description>The process that maintains
 the most up-to-date information about
 the existence and status of every
 known language.</description>
 </inventory>
 <publication id=”c2.edition”>
 <name>Ethnologue Edition</name>
 <description>The process that produces
 a particular, published edition of the
 catalog of all known living languages
 of the world.</description>
 <fedBy process=”c2.WorldLang”/>
 <fedBy process=”c2.LangMaps”/>
 <producedAt location="c3.HQ"/>
 <timing cycle="c5.Edition"/>
 </publication>
 ...
 </businessProcesses>
 ...
</columnTwo>

7

generic notion of a Row Two process has been elaborated by defining these two subtypes. Each

thing element has an ID attribute, which provides a unique identifier that can be used as the target

of relationships. Each thing element also contains a <name> and <description> element for

human-readable documentation. The XML element for a relationship is embedded in the thing it

originates from and contains an IDREF attribute that expresses the unique identifier of the thing

that is the target of the relationship. In Figure 2, <fedBy> is an example of a relationship. The

instance <fedBy process=”c2.WorldLang”/> is embedded in the Ethnologue Edition

process and points to the World

Language Inventory process. It

is therefore a formal statement of

the fact, “The Ethnologue

Edition publication process is fed

by the output of the World

Language Inventory process.”

Figure 3 shows the graphic representation of this model that is generated by GEM from the

source fragment in Figure 2.

Figure 3: The graphic model generated from Figure 2

Relationships between things in different columns are called integrations and are expressed

in the same way. In Figure 2, <producedAt> integrates the process to the thing in the Column

Three model that represents the

location where it is produced and

<timing> integrates the process

to the thing in the Column Five

model that represents the timing

cycle for the process. Figure 4

shows the textual model generated

by GEM for the <publication>

element in Figure 2. It is an

HTML document in which the

targets of the relationships and

integrations are active links to the

definition of the referenced thing.

Figure 4: The textual model generated from Figure 2

Ethnologue Edition
A publication process. The process that produces a

particular, published edition of the catalog of all known living
languages of the world.

Relationships
Fed by: Language Map Inventory
Fed by: World Language Inventory

Integrations
Produced at: International Headquarters
Consumed by: Public
Produced by: VP Academic Affairs Office
Timing: Ethnologue Edition Cycle
Motivation: Publish Ethnologue

8

http://localhost:8088/mount/nextgem/development/Ethnologue/cell/c3/r2/view#c3.HQ
http://localhost:8088/mount/nextgem/development/Ethnologue/cell/c4/r2/view#u.public
http://localhost:8088/mount/nextgem/development/Ethnologue/cell/c4/r2/view#u.vpaa
http://localhost:8088/mount/nextgem/development/Ethnologue/cell/c5/r2/view#c5.Edition
http://localhost:8088/mount/nextgem/development/Ethnologue/cell/c6/r2/view#c6.ethno

This example illustrates an important feature of the GEM language, namely, that the reverse

relationships and integrations are never expressed explicitly in the XML source code, but always

inferred by the compiler that generates the textual model, thus avoiding redundancy and the

potential for update anomaly. For instance, in Figure 4, the “Produced by” and “Consumed by”

integrations were actually expressed in the source code of the Column Four model and the

“Motivation” integration was actually expressed in the source code of the Column Six model.

Figure 5 summarizes the coverage of GEM for modeling the owner (Row Two) perspective.

This represents about one-

third of the GEM language;

the remainder is for

modeling the things,

relationships, and

integrations of the designer

perspective (Row Three),

plus further details like

attributes of data entities

and states of timing cycles

that are needed to fully

specify the logical design

of a subsystem. The rows

of the table in Figure 5

correspond to the six

columns of the Zachman

Framework (labeled C1

through C6). The contents

of the table cells list the

XML elements for

expressing things,

relationships, and integrations in the given framework column. The latter entries also identify the

column that is the target for the integration. The entries in the integration column that are in

italics are for the implicit reverse integrations that are generated by the compiler.

Figure 5: GEM vocabulary for Row Two models

 Things Relationships Integrations

C1 object
association

hasAssociations
associatedWith
hasMembers
hasStructure

Tracked in C2
Model for C4
Motivation is C6

C2 inventory
publication

fedBy tracks C1
producedAt C3
hasTiming C5
Produced by C4
Consumed by C4
Motivation is C6

C3 site linkedTo Produced here C2
Located here C4
Motivation is C6

C4 orgUnit administeredBy modeledAs C1
produces C2
consumes C2
locatedAt C3
Monitors C5
Motivation is C6

C5 businessCycle spawns
intersects

monitoredBy C4
Timing for C2
Motivation is C5

C6 goal
objective

meansFor reasonFor C1,
 C2,C3,C4,C5

9

The XML elements listed in Figure 5 can be likened to the vocabulary of the GEM language.

From these “words” it is possible to construct sentences like, “Object X associatedWith Object

Y” and “Inventory Z tracks Object X.” An XML DTD (Document Type Definition) along with a

Schematron schema defines the grammar of the language (that is, the constraints on how the

possible words can be combined to create valid sentences). For instance, the schema prevents a

sentence like “Inventory Z tracks Site W” since the object of tracks must be a Column One thing.

The Repository of Enterprise Models

 “Any fool can make things bigger, more complex, and more
violent. It takes a touch of genius — and a lot of courage — to
move in the opposite direction.” — Albert Einstein

Modeling an entire enterprise and then managing how its models change over time is a huge

task. GEM supports enterprise-wide modeling in two critical ways. First, the complete

enterprise (which is too big to handle in one model) is divided into numerous subsystems (each

of which is of a manageable size). A subsystem represents a focused set of business functions

that falls under the stewardship of a single vice president who “owns” the subsystem on behalf of

the enterprise. A GEM source file describes the architecture of just one of those subsystems.

Individual subsystem models may reference elements defined in other subsystem models. In this

way, the collection of subsystem models is knit into a single contiguous enterprise model and an

internal web application allows all stakeholders to browse the set of subsystem models as an

integrated whole.

Second, a single subsystem model may simultaneously describe the subsystem at various

points in the history of its development. Each subsystem declares a set of stages in a build

sequence and each thing and relationship is assigned to the stage in which it is added to (and in

some cases dropped from) the subsystem. A request to change the functioning enterprise is made

by specifying a new stage in the build sequence of the affected subsystem. Each stage passes

through a development life cycle with the following states: proposed, planned for

implementation, in development, in quality assurance testing, and in production.

The XML source files for all of the subsystems are stored in a single repository managed by

Subversion — an open-source revision control system. Figure 6 shows the home page of the

dynamic web application SIL has developed for providing a user interface to the repository of

10

enterprise models, and shows all of the subsystems (which are limited to a selection of eight to

reduce the size of the graphic) as well as the entire enterprise. The left-hand column names the

subsystems that have been modeled; they are grouped under headings for the corporate officer

who is steward for the model. The numbers on the right-hand side are rough metrics giving the

number of things defined in the models for each column. The five columns in the middle of the

page give links for navigating to the models themselves; if the subsystem has at least one build-

sequence stage in the named life-cycle state, then the link is dark and active. The repository

application (by adding and dropping model elements based on the life-cycle state of the build

sequence stages) is able to display the models for each subsystem in each of the possible life-

cycle states. This helps the enterprise to visualize, discuss, and manage change.

Figure 6: The GEM Repository of Enterprise Models

11

Figure 7: Framework for the Ethnologue System in Development State

Figure 7 is a screenshot showing the result of clicking on the “Development” state link for

the Ethnologue subsystem that appears in Figure 6. The body of the page contains 35 links, each

of which produces a different view of information in the single GEM language source file. The

application is built with Apache Cocoon — an open-source web application framework that uses

pipelines of XSLT scripts to transform the XML source file on-the-fly into the requested textual

and graphic displays. The top half of the screen gives links to displays that summarize the

models over all the columns of the Zachman Framework. The bottom half of the screen gives

links to the individual cell models for the top three rows of the Zachman Framework. These are

the rows that deal with the ideas that lie behind the subsystem before it is transformed into a

technology solution. These are the models that are used by executive leaders and the staff

sections they manage. This repository application is aimed at these users; another application,

the GEM Workbench, is aimed at IT staff and encompasses all the rows of the Zachman

Framework.

12

Figure 8 shows the first page of the HTML document generated as a result of clicking the

“model” link in Row Two and Column Two. It illustrates the content from Figure 4 in its full

context. Each of the eighteen

“list” and “model” links in the

bottom half of Figure 7 generates a

comparable document. The G

icons in the second and third rows

are also links; they generate the

graphic form of the primitive cell

model. Figure 9 shows all six of

the graphic models generated for

Row Two of the development state

of the Ethnologue subsystem.

These graphs are created by

transforming the XML source

model into a graph specification in

the DOT graphic description

language which is then rendered

on-the-fly by Graphviz — an open-

source graph visualization

package.

Figure 8: A primitive cell model (as text)

Since the XML source file for one subsystem is able to make reference to an element defined

in another subsystem, the repository application is able to assemble the entire enterprise model

by aggregating the individual subsystem models. This is the effect of clicking on the links for

Complete Enterprise at the bottom of Figure 6. The result is a screen comparable to Figure 7, but

that generates the models for the entire enterprise by aggregating the individual subsystem

models. For example, Figure 10 shows the Row Three data model for all the subsystems that are

in production — in other words, it is the logical data model for the Enterprise Information

System as it is currently in production. The entities are defined in eight different subsystems and

the graphic color codes the entities by subsystem. This graph brings to light a current deficiency

in the state of development — the six subsystems on the left side of the graph form a contiguous

13

Figure 9: All Six Primitive Cell Models for Row Two (as graphs)

model, but the two subsystems on the right have yet to be integrated with the rest of the

enterprise.

14

Figure 10: The enterprise-wide Row Three data model

15

Progress to Date

“In a time of drastic change it is the learners who inherit the
future. The learned usually find th emselves equipped to live in a
world that no longer exists.” — Eric Hoffer

SIL’s efforts at re-engineering and creating an integrated Enterprise Information System are a

work in progress. Their enterprise architecture blueprints facilitate communication among the

staff of SIL so that the operational aspects of SIL that are managed by those people, including

IT, can be aligned. To date SIL’s repository holds eighteen subsystem models and each falls

under the stewardship of one of their vice presidents. Originally, they had blueprints for only

Column One (data models) of the Zachman Framework. The impetus for developing GEM was

to get the complete architecture under control by developing blueprints for the other five

columns as well.

Figure 11 reports the progress to date in achieving this. This, as well as the entire GEM

development effort, represents the work product of a small team consisting of an enterprise

architect and a software engineer (both devoting less than half-time to the endeavor), plus a few

domain specialists

who have learned to

do the GEM

modeling for

subsystems in their

domain. The two

rows of the table

separate counts for

the eight

subsystems that are now part of the in-production integrated Enterprise Information System

versus the ten that are in an earlier stage of planning or development. The second column in the

table gives a sense of the size of the effort by reporting the number of data entities in the Column

One models. (Note that a large number of the data entities for the subsystems in production are

within build-sequence stages that are not yet in production; this is why the aggregated model in

Figure 10 contains many fewer than 178 entities.) The remaining columns show the progress

Figure 11: Enterprise Architecture Progress and Control at SIL

Modeled in at least n columns of
the Zachman Framework

GEM
subsystems

Data
entities

2 3 4 5 6
In production 8 178 5 4 3 3 1
Not in production 10 248 9 6 3 3 2

Totals 18 426 14 10 6 6 3
As per cent 78% 56% 33% 33% 17%

16

http://www.brainyquote.com/quotes/quotes/e/erichoffer152423.html

toward modeling the enterprise in all columns of the Zachman Framework: three-quarters of the

subsystems are now modeled in two columns, just over half in three columns, one-third in five

columns, and only one-sixth in all six columns.

Considering that most enterprises today are fortunate to have even the single data column

fully architected, let alone enterprise-wide, SIL stands at the vanguard of what may be a

paradigm shift in how enterprises are managed. A change in thought and practice perhaps as

significant as those brought about in the Industrial Age by Frederick Taylor’s “scientific

management” and Joseph Juran’s “statistical quality control” (Kappelman, 2007). And with their

enterprise architecture language, tools, methods, and process in place, and with significant

organizational learning and success already experienced, SIL’s pace and momentum are on the

rise.

Lessons Learned

“Someday, you’re going to wish you had all those models,
enterprise-wide, horizo ntally and vertically integra ted, at an
excruciating level of detail.” — John Zachman

Even more than the benefits of creating new tools, processes, methods, innovations,

technologies, and intellectual capital while transforming their IT systems, SIL has learned some

critical and universal lessons. Lessons, perhaps even basic truths, which shed light not only on

the practice and value of enterprise architecture but also on some of the fundamental causes of

seemingly intractable issues in IT management, such as the perennial quest for alignment.

Among these was the discovery that when the owner speaks directly with the builder

(skipping over the Row Three designer), the result is typically a localized stove-piped solution

that is not architecturally optimal and thus difficult and costly to integrate and change. That is,

the problem of immediate concern is solved but at the cost of adding more complexity to the

overall enterprise than was actually necessary. Regrettably, the lack of staff that can function as

Row Three architects has been a bottleneck in most of SIL’s projects, and it appears this shortage

of the architecturally skilled is widespread. Row Three is a scarce but critical perspective.

The fact that someone has been successful as a software designer (Row Four) does not mean

they will be successful as an enterprise designer in Row Three. It takes someone who can

straddle the owner’s perspective in Row Two and the builder’s perspective in Row Four — who

17

can translate the owner’s view into a formal logical design that transcends any particular

technology for implementing it. Technology designers tend to push a Row Four perspective into

Row Three by solving the problem in terms of their preferred technology. The GEM language is

giving SIL a way to train people to function in the Row Three role without getting drawn into the

details of a Row Four technology solution.

Through GEM, SIL has also learned that having and maintaining “all those models” is

possible if they are automatically generated from a single source. When all the primitive models

are generated on demand from a single source they always stay synchronized and in alignment,

and enable the enterprise as implemented to be in alignment, In sum, SIL has found that

elaborating Zachman’s Enterprise Architecture Standards to create a custom modeling language

allows an enterprise to gain control of its architecture; but more importantly, to gain control of

the actual data, processes, technologies, people, and other resources of which the architecture is a

representation. Moreover, having a constrained formal language allows novice modelers to be

productive and ensures that all modelers produce comparable results.

But more than all this, SIL has found that the most important result of their enterprise

architecture initiative was not the new Enterprise Information System (as they originally thought

it would be), but an enterprise change management process that will make it possible for them to

use their newly developed enterprise blueprints to manage the never ending cycle of changes to

the enterprise. In other words, enterprise architecture is the key to SIL achieving the design

objectives that keep nearly all IT managers up at night — alignment, simplicity, flexibility,

speed, and agility.

In order to ensure that this is the result, SIL’s EA leadership team recently assigned their

Chief Architect two new highest priorities: (1) developing a plan for finishing the blueprints of

all subsystems that are part of the in-production Enterprise Information System (including

reverse engineering the models for the legacy subsystems and third-party systems that were

integrated without blueprints), and (2) assisting the EA Program Manager to specify an

enterprise change management process that is based on managing the complete blueprints.
Zachman’s theory remains confirmed by the practical experience of SIL International, and

SIL has realized tangible and intangible benefits as their enterprise architecture efforts are

helping them to bridge the chasm between strategy and implementation (Kappelman, 2007). SIL

has found that their architecture isn’t their organization any more than a map is the highway or

18

the blueprints the building. But like maps and blueprints, enterprise architecture is a tool to help

us efficiently and effectively get where we want to go, and to keep us from getting lost.

References

Chen, Peter P. (1976). “The Entity-Relationship Model: Toward a Unified View of Data,” ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9-36.

Gordon, Raymond G., Jr. (ed.) (2005). Ethnologue: Languages of the World, (15th edn.).
Dallas: SIL International. Web edition at: http://www.ethnologue.com.

Kappelman, Leon A. (2007). “Bridging the Chasm,” Architecture and Governance, vol. 3, no.
2, http://www.architectureandgovernance.com/articles/09-lastword.asp.

Kotter, John P. (1996). Leading Change. Harvard Business School Press.

Zachman, John A. (1987). “A Framework for Information Systems Architecture,” IBM Systems
Journal, vol. 26, no. 3, IBM Publication G321-5298,
http://www.research.ibm.com/journal/sj/382/zachman.pdf.

Zachman, John A. (2001). The Zachman Framework for Enterprise Architecture: A Primer for
Enterprise Engineering and Manufacturing, Zachman International,
http://www.zachmaninternational.com/2/Book.asp.

Zachman, John A. (2006). “Enterprise Architecture Standards.” Zachman International,
http://www.zachmaninternational.com/2/Standards.asp.

Zachman, John A. (2007). “Architecture Is Architecture Is Architecture,“ EIMInsight, vol. 1, no.
1, March, Enterprise Information Management Institute,

http://www.eiminstitute.org/library/eimi-archives/volume-1-issue-1-march-2007-edition.

Zachman, John A. and Sowa, J. F. (1992). “Extending and Formalizing the Framework for
Information Systems Architecture,” IBM Systems Journal, vol. 31, no. 3, IBM Publication
G321-5488.

19

http://www.ethnologue.com/

About the Authors

Gary Simons, Ph.D. currently holds the position of Associate Vice President for Academic
Affairs with SIL International (Dallas, TX). While serving in that role he has participated in the
development of cyberinfrastructure for the field of linguistics as co-founder of the Open
Language Archives Community (http://www.language-archives.org/), co-developer of the ISO
639-3 draft standard of three-letter identifiers for the known languages of the world
(http://www.sil.org/iso639-3/), and executive editor of the Ethnologue
(http://www.ethnologue.com/). He has also served as Chief Architect within the senior
leadership team at SIL International that since 2000 has been guiding enterprise reengineering
and the implementation of a new Enterprise Information System, which is a web-based system
for supporting interoperation among more than a hundred operating entities around the world. In
order to support this architecture effort, he has teamed with colleague Lars Huttar to develop the
Generic Enterprise Modeling system described in this article. Before taking up his current post in
1999, he served 15 years as director of SIL’s Academic Computing Department where he
oversaw the development of software tools for supporting language analysis and description.
Prior to that he did linguistic fieldwork with SIL in Papua New Guinea (1976) and Solomon
Islands (1977-1983). In 1979, he received a Ph.D. in general linguistics from Cornell University
(with minor emphases in Computer Science and Classics). He is a member of the Association
for Computational Linguistics, the Association for Literary and Linguistic Computing, the
Association for Computing Machinery, the Linguistic Society of America, and the Text
Encoding Initiative Consortium.

Leon A. Kappelman, Ph.D. is a research scientist, teacher, author, speaker, and consultant
dedicated to helping organizations better manage their information, systems, and technology
assets. He is Director Emeritus of the Information Systems Research Center and a Professor of
Information Systems in the Information Technology & Decision Sciences Department of the
College of Business Administration at the University of North Texas, where he is also Associate
Director of the Center for Quality and Productivity and a Fellow of the Texas Center for Digital
Knowledge. He is also co-chair of the Society for Information Management’s Enterprise
Architecture Working Group and has done EA work for the Executive Office of the President of
the United States and the Department of Veterans Affairs, given presentations and written
articles about EA, and testified before the US Congress on EA practices in the federal
government. He has conducted seminars and workshops and presented in North America,
Europe, and Asia; his work has been reported in the Wall Street Journal, New York Times,
Business Week, Newsweek, Dallas Morning News, Washington Post, Vanity Fair, L.A. Times,
and scores of other newspapers and magazines; he has appeared on CNN, CNBC, PBS, ABC
World News Tonight, as well as numerous local television and radio stations. Dr. Kappelman’s
professional expertise centers on the management of technology in enterprises, and includes the
strategic planning including enterprise architecture; project management; management of
change; continuity of operations and emergency management; performance measurement
including information systems assessment and evaluation; information systems development and

20

http://www.language-archives.org/

maintenance; IT-related legal and ethical issues; and high-tech and public policy concerns like
privacy, security, and software quality. Professor Kappelman has published several books, and
over 100 articles. Additional information about Professor Kappelman and his work can be found
on his website at http://courses.unt.edu/kappelman/.

John A. Zachman is an internationally recognized thought leader in the discipline of Enterprise
Architecture. He is the originator of the "Framework for Enterprise Architecture" which has
received broad acceptance throughout the world as an integrative framework for understanding
enterprises and the systems, people, technologies, and processes that comprise and support them.
The Zachman Framework is a model or ontology for understanding and managing change in
enterprises. He is not only known for this work, but also for his early contributions to Business
Systems Planning, IBM's widely used information planning methodology in the 1970s, as well as
Intensive Planning, the basis for IBM's executive, team planning techniques. Mr. Zachman has
focused on planning and information strategies, and on architecture, since 1970 and has written
many articles on these subjects. He travels nationally and internationally, teaching and
consulting, and has facilitated innumerable executive team planning sessions. He is a popular
conference speaker known for motivating messages on information issues. He has spoken to
thousands of information professionals and business managers on every continent. Mr. Zachman
serves on the Executive Council for Information Management and Technology (ECIMT) of the
United States Government Accountability Office (GAO). He is a Faculty Fellow of the
Information Systems Research Center in the College of Business Administration at the
University of North Texas. He serves on the Advisory Board for the Data Resource Management
Program at the University of Washington and on the Advisory Board of the Data Administration
Management Association International (DAMA-I) from whom he was awarded the 2002
Lifetime Achievement Award. He was awarded the 2004 Oakland University, Applied
Technology in Business (ATIB), Award for IS Excellence and Innovation. In addition, he has
served on the Board of Councilors for the School of Library and Information Management at the
University of Southern California, as a Special Advisor to the School of Library and Information
Management at Emporia State University, and on the Advisory Council to the School of Library
and Information Management at Dominican University. John is Board Chair of Zachman
Framework Associates, Chief Executive Officer of the Zachman Institute for Framework
Advancement (ZIFA), and he also operates his own education and consulting business, Zachman
International.

21

