Good, Better, and Best Practice

The Experience of the E-MELD Project

Gary Simons, SIL International Helen Aristar Dry, Eastern Michigan U.

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

•

Good, Better, and Best Practice

- Part 1: Toward Enduring Resources (Dry)
- Part 2: Toward Interoperable Resources (Simons)
- And in the spirit of PAuLA, TITUS, and LAMUS, we provide some

Acronyms In Dubious Shapes

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

į

E-MELD

Electronic Metastructure for Endangered Languages Documentation

- 5 year NSF project
- Goal: To aid in
 - ...the preservation of endangered languages data, and
 - ...the development of infrastructure for electronic archives

Feb 23 2006

DGfS 2006, Bielefeld, Germany

3

Source of E-MELD Recommendations

- Working groups of language engineers and documentary linguists
- At 5 E-MELD workshops:
 - 2001: The Need for Standards
 - 2002: Lexicons
 - >2003: Texts
 - 2004: Databases
 - 2005: Ontologies in Linguistic

Annotation

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

E-MELD 2006

- "Digital Tools and Standards: The State of the Art"
- June 20-22, Lansing, MI
- /emeld.org/workshop/2006/
- Please join us!

Feb 23 2006

DGfS 2006, Bielefeld, Germany

E-MELD Vision of **Digital Language Resources**

- Preservable: formats are not vulnerable to physical decay or obsolescence of hardware & software
- Intelligible: content is easily understood by future scholars
 - "We don't want to create another Rosetta Stone" (Whalen, 2003)
- Accessible: distributed resources are easily discovered and accessed

Interoperable: documentation created by different scholars is easily searched, compared, EI Jand reused.

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Initial Emphasis: the role of

The Individual Linguist

The E-MELD School of Best Practices in Digital Language Documentation

http://emeld.org/school/

Ask-An-Expert

http://emeld.org/school/ask-expert/

7

E-MELD Recommendations of Best Practice:

The Individual Linguist		
Text	Make an archive copy in .txt file format. Use Unicode Use XML markup	
	Link terminology to an ontology	
Audio	Use .wav, .aiff, .au format Don't edit or convert archival copy	
Video	Record audio separately from video Save an uncompressed copy if possible	
Image	Scan at 600 dpi Archive in .tiff, .gif (B&W) formats	

However, experience has shown . . .

- Not realistic to expect best practice from every individual linguist :
 - Lack of tools
 - Lack of training
 - 👇 "I can't even spell XML"
 - Standards immature, e.g. GOLD ontology

Feb 23 2006

DGfS 2006, Bielefeld, Germany

0

The Task of: Preserving digital language resources

- Not the responsibility of the Linguist alone.
 - Must be shared with Archive & Service
- Recommended practices can be ranked on a scale:
 - Good: an acceptable minimum
 - **Better:** attainable & should be promoted
 - Best: essential to the final vision, but not always attainable now.

Definition of the scale differs for different stakeholders

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

For Individual Linguists

GOOD	Preservation	Put the resource in an enduring file format
	Intelligibility	Document the content
BETTER	Access	Create an archive-ready collection and deposit it with an archive
BEST	Interoperability	Format to facilitate automatic processing

13

Good practice for the Linguist: Preservation of the format

An enduring file format is one that offers **LOTS**:

- Lossless
- Open
- Transparent
- Supported by multiple vendors

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Lossless

- No content should be lost through compression
- Uncompressed file formats (lossless):
 - Audio: .wav, .aiff, .au (pcm)
 - Images: .tiff, .bmp
 - Video: .avi (depends on codec), rtv
 - Text: .txt, html, xml
- Compressed but lossless:
 - Audio: .ale (Apple Lossless Encoding)
 - Images: .gif (black & white only)
- ELD Video: jpeg2000 (new 1:10 ratio)
 - Text: .zip

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

15

OPEN

- Prefer a file format whose specification is publicly available, i.e., "Open standard."
 - Exs: html, XML, pdf, rtf
- Information in proprietary file formats will be lost when the vender ceases to support the software

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

OPEN (cont.)

- "Open standard" is different from "open source," i.e., software whose source code is publicly available
 - Exs: Open Office, Mozilla Thunderbird
 - Open source software usually creates files in open standards. And proprietary software usually doesn't (though there are exceptions, e.g. Adobe pdf).
 - But for longterm intelligibility, open standards are more important than open source software

Feb 23 2006

DGfS 2006, Bielefeld, Germany

17

Transparent

- Format requires no special knowledge or algorithm to interpret
- One-to-one correspondence between the numerical values and the information they represent, e.g.
 - Plain text: one-to-one correspondence between numbers & characters
 - PCM codec (.wav, .aiff, cdda): One-to-one correspondence between the numbers & the amplitudes of the sound wave

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Transparent (cont.)

- Plain text can be read by any program that handles text
- PCM files can be processed by any program that handles audio
- By contrast .zip and mp3 files require implementation of a complex algorithm to restore the original correspondences

Feb 23 2006

DGfS 2006, Bielefeld, Germany

19

Support by multiple vendors

- Makes a file format less likely to fall victim to hardware and software obsolescence.
- Is encouraged by use of open standards:
 - If a file format is open, anyone can create programs that handle it
 - Not necessary to reverse engineer the format or purchase the specification from the developer

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Good Practice for the Linguist: Preserving the Content

- So longterm preservation of the file format requires LOTS.
- But, for longterm intelligibility, the linguist must do even MORE:
- Document the:
 - Markup
 - > Occasion
 - Rubrics

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

21

Intelligibility: Document the Markup

- Document all markup, whether
 - Presentational: make explicit the information encoded in the formatting
 - Bolding indicates "headword"
 - Punctuational:
 - "A semi-colon separates the different senses of a word"

<pos> stands for 'part of speech'

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Intelligibility: Document the Markup

- Recommendation: for the archival form,
 use descriptive markup, not presentational
 - > Descriptive markup is content-based
 - Presentational markup merely records the format.
- Many different presentational formats can be created from a single archival form, if the archival copy has descriptive markup.

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

23

Intelligibility: Document the Occasion

- Record the
 - ▶ Time & place
 - > Type of speech event
 - Participants
 - Language(s)
- Write descriptive metadata: OLAC or IMDI

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Intelligibility: Document the Rubrics

- Abbreviations: list every abbreviation and what it stands for
- Terminology: define the concepts used in the language description
 - "Absolutive refers to "an unpossessed noun" in Uto-Aztecan.
- Glossing rules:

eb 23, 2006

DGfS 2006, Bielefeld, Germany

25

Intelligibility: Document the Encoding

- Encoding:
 - > Identify the base character set
 - Example: ISO 8859-1, CJK
 - Document every non-standard character used
 - Or use Unicode (recommended)
 - Unambiguous standard
 - Promotes interoperability

With Unicode, document every character placed in the Private Use Area.

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Intelligibility: Standards

- reduce individual effort & facilitate interoperability
- Markup > XML
- Occasion > OLAC Standardized vocabularies:
 - OLAC Discourse Type Vocabulary
 - OLAC Language Vocabulary (ISO 636-3)
 - OLAC Linguistic Subject Vocabulary
 - OLAC Linguistic Type Vocabulary
 - OLAC Role Vocabulary
- Rubrics > GOLD, Leipzig Glossing Rules
- Encoding > Unicode

27

Better Practice: Promote Discovery & Access

- Deposit the resource in an archive
- A file with LOTS MORE should be stored in an archive that offers MUCH:
 - Migration
 - User access
 - Cataloging
 - Harboring

Feb 23, 2006

DGfS 2006, Bielefeld, Germany

Archive Recommendations: Offer MUCH:

- Migration to new storage media and formats as technologies change
- User access within the bounds of IPR.
 Digital archives should provide more than local access (e.g., URLs) even if not interoperable with other archives.
- Cataloging: resources organized, metadata made available

Markey (markey for the

DGfS 2006, Bielefeld, Germany

20

Scale of Practices for Archives

GOOD	Preservation	If needed, transfer to a format with LOTS		
		Migration to new media & file formats as technology changes		
		Retention of technology where "look & feel" important		
	Intelligibility	Retention of metadata & creation if missing		
BETTER	Access	Public availability of metadata IPR agreements with time limits URL's for resources (also enables shallow interoperability)		
BEST	Interoperability	On to Gary's presentation		

Good, Better, and Best Practice

Part 2: Toward Interoperating Resources

Gary F. Simons SIL International

DGfS 2006, U. of Bielefeld

4

E-MELD End Vision

- The digital products of the linguistics community's efforts to document endangered languages:
 - Will endure far into the future
 - Will be found and used by any who have an interest in the documented languages
 - Will enable our knowledge about the world's languages to be combined and searched to an unprecedented degree

Feb 23, 2006

DGfS 2006, U. of Bielefeld

The interoperation problem

- Once the resources that linguists create are being preserved for the future in a host of archives:
 - How can potential users ever find the resources they are interested in?
 - How can users search the combined work of different linguists, especially when they have used different markup or terminology?
- Solutions require archives and resources to interoperate.

Feb 23, 2006

DGfS 2006, U. of Bielefeld

.

Services to the rescue

- The user can't solve these problems there are too many archives to visit.
- An archive can't solve these problems all the other archives have to be included.
- A service can solve the problems—
 - An automated system that supports interoperation among all participating archives.
 - Provides a single point of entry for users.
 - Developed and maintained by an institution.

DGfS 2006, U. of Bielefeld

The key players					
	User	A person who wants to use language resources			
EMELD	Linguist	A person who creates language resources			
	Archive	An institution that curates language resources			
	Service	An institution that makes language resources interoperate			
Feb 23, 2006		DGfS 2006, U. of Bielefeld 5			

Two kinds of interoperation

- Shallow interoperation
 - Based on the surface content of plain text
 - Generic to all problem domains
 - Based on the ubiquitous HTTP infrastructure
- Deep interoperation
 - Based on underlying concepts and structures
 - Built for a specific problem domain
 - Requires a domain-specific infrastructure (e.g. protocols, markup, controlled vocabularies)

Feb 23, 2006

DGfS 2006, U. of Bielefeld

7

Supporting shallow interoperation

- Such services already exist: e.g., Google
- If an archive exposes its catalog as web pages, it will have shallow interoperation at the level of metadata.
- If an archive provides web links to resource content, it will have shallow interoperation at the level of data content.
- EMELD

Easy for the archive to do and easy for the user to use.

Feb 23, 2006

DGfS 2006, U. of Bielefeld

So what's the problem?

- Lots of noise
 - The words used to formulate the query have many irrelevant senses. E.g.
 - Ega is the name of a language
 - It is also an acronym with unrelated meaning
- Lots of drop out
 - The target concept may be in the text as a word different from the one in the query. E.g.
 - Synonyms; Alternate names

Feb 23, 2006

DGfS 2006, U. of Bielefeld

0

An example of shallow search

- Using Google to look for an Ega dictionary
- Try: Ega dictionary (120,000 hits)
 - Enhanced Graphics Adapter, Enterprise Grid Alliance
 - 19: E-MELD School of Best Practice: Ega Lexicon
 - 92: Endangered Language Foundation
- Try: Ega lexicon (24,500 hits)
 - 1: E-MELD School of Best Practice: Ega Lexicon
 - 2: Ega Web Archive (at Bielefeld)
 - Next 98 hits include 4 that refer to the language

Feb 23, 2006 DGfS 2006, U. of Bielefeld

An example of deep search

- Using OLAC to look for an Ega dictionary
 - Open Language Archives Community
 - Uses controlled vocabulary to identify language
 - Uses controlled vocabulary for linguistic types
- Language code='ega' and Type='lexicon' (6 hits)
 - All are relevant items from U Bielefeld Language Archive
 - Typescript, recording and transcripts of word listsData files: Shoebox, XML, CSV

EMELD

Feb 23, 2006

DGfS 2006, U. of Bielefeld

11

Recall and precision

- Recall: Proportion of relevant that is retrieved
- Precision: Proportion of retrieved that is relevant

Relevant Retrieved

Relevant and retrieved Retrieved but not retrieved not relevant

EMELD

23, 2006 DGfS 2006, U. of Bielefeld

Improving recall and precision

- Improve recall for linguistic searches by:
 - Making more materials accessible to Google
 - Putting more keywords in metadata of HTML head
- Improve precision for linguistic searches by:
 - Encoding resources with controlled vocabularies that have been adopted by the domain community
 - Building domain-specific services
 - To keep high recall, archives must make all their resources accessible to domain-specific services

Evaluation scale:

Levels of practice for archives

Bad: Does not do MUCH

Good: Does do MUCH

Better: And supports shallow interoperation

To increase recall in generic services

Best: And supports deep interoperation

To increase precision via domain services

Feb 23, 2006

DGfS 2006, U. of Bielefeld

15

Supporting deep interoperation

- An archive supports deep interoperation if:
 - Its resources use XML markup so that machines may interpret their contents
 - The XML encoding uses domain-specific controlled vocabularies
 - It implements the protocol of a domainspecific service so that the service can access its deep resources

Feb 23, 2006

DGfS 2006, U. of Bielefeld

Nine shades from Good to Best

- An archive actually picks a value for both:
 - Kind of support for interoperation of metadata
 - None: There is no online catalog
 - Shallow: The catalog is available as web pages
 - Deep: The catalog is in domain-specific XML
 - Kind of support for interoperation of full data
 - None: There are no online resources
 - Shallow: The resources are available as web pages
 - Deep: The resources are in domain-specific XML

Feb 23, 2006

DGfS 2006, U. of Bielefeld

17

Best practice:

Vocabularies recommended by E-MELD

- Use ISO 639-3 codes to identify languages
 - http://www.sil.org/iso639-3/
 - Ethnologue codes plus Linguist List codes
- Use Dublin Core with OLAC extensions for descriptive metadata
 - http://www.language-archives.org/
- Use GOLD (General Ontology for Linguistic Description) for linguistic terms and concepts
 - http://www.linguistics-ontology.org/

MELD

Feb 23, 2006

DGfS 2006, U. of Bielefeld

Dimensions of service

- For all services:
 - Closed vs. Open
 - Generic vs. Domain specific
- Further dimensions for domain-specific services:
 - Metadata vs. Full content
 - Precision-supplied vs. Precision-added

DGfS 2006, U. of Bielefeld

19

Good and Better in services

- The second is better than the first:
 - Closed vs. Open
 - Only people inside the service know how to place new resources into the service., vs.
 - The specifications for entering the service are published and people outside the service can meet those specs.
 - Generic vs. Domain specific
 - Supports domain-neutral shallow interoperation, vs.
 - Supports domain-specific deep interoperation.
- Examples

- Google: Open and Generic
- Typology projects: Closed and Domain-specific

Feb 23, 2006

DGfS 2006, U. of Bielefeld

Dimensions of the Best

- Services that are Open + Domain-specific vary in:
 - Scope
 - The service operates over metadata, vs.
 - The service operates over a focused aspect of full content.
 - Source of precision
 - The depth is encoded in the form provided by archives, vs.
 - The depth is mined from shallow resources.
- Examples
 - OLAC: Metadata and Precision-supplied
 - Metaschema experiments: Data and Precision-supplied
 - ODIN: Data and Precision-added

Feb 23, 2006

DGfS 2006, U. of Bielefeld

21

1. Open Language Archives Community

- An open standard for metadata and protocol for harvesting: www.language-archives.org
- 34 institutions now participate by contributing to a pooled catalog of language resources
- As part of E-MELD, Linguist List has developed a search service over that catalog:

http://www.LinguistList.org/olac/

DGfS 2006, U. of Bielefeld

What the archive supplies

```
- <olac:olac xsi:schemaLocation="http://www.language-archives.org/OLAC/1.0/
 http://www.language-archives.org/OLAC/1.0/olac.xsd
 http://purl.org/dc/elements/1.1/
 http://www.language-archives.org/OLAC/1.0/dc.xsd http://purl.org/dc/terms/
 http://www.language-archives.org/OLAC/1.0/dcterms.xsd">
   <title>Ega lexicon (Gbery)</title>
   <creator>Gbery, Eddy Aime</creator>
   <creator>Baze, Lucien</creator>
   <subject xsi:type="olac:language" olac:code="ega"/>
   <description>Ega lexicon in Shoebox format</description>
   <publisher>unpublished</publisher>
   <contributor>Lindenlaub, Juliane</contributor>
   <date>2003-03</date>
   <type xsi:type="olac:linguistic-type" olac:code="lexicon"/>
   <format>shoebox</format>
   <language xsi:type="olac:language" olac:code="fra"/>
   <language xsi:type="olac:language" olac:code="ega"/>
   <language xsi:type="olac:language" olac:code="eng"/>
   <language xsi:type="olac:language" olac:code="deu"/>
   <coverage>Cote d'Ivoire</coverage>
 </olac:olac>
```


2. The metaschema experiments: Based on E-MELD founding principles

- The inaugural EMELD workshop (2001) easily reached consensus on three points:
 - XML descriptive markup provides the best format for the interchange and archiving of endangered language data.
 - No single schema for XML markup can be imposed on all language resources.
 - Linguists need to be able to perform queries across multiple resources.

Feb 23, 2006

DGfS 2006, U. of Bielefeld

25

A fundamental problem

- How to interoperate across resources when:
 - Those resources use different markup schemas
 - The linguists have used different terminology in their analysis and description
- The EMELD solution is based on GOLD:
 - General Ontology for Linguistic Description
 - Use a shared ontology of linguistic concepts as the basis for interoperation across disparate markup and terminologies

Feb 23, 2006

DGfS 2006, U. of Bielefeld

Converting from Markup to Meaning

- markup schema
 - A formal definition (as with XML DTD or XML Schema) of the vocabulary and syntax of markup for a class of source documents.
- semantic schema
 - A formal definition (as with RDF Schema or OWL) of the concepts in a particular domain.
- metaschema

A formal definition of how the elements and attributes of a markup schema are interpreted in terms of the concepts of a semantic schema.

Feb 23, 2006

/Lexeme>

DGfS 2006, U. of Bielefeld

27

A sample Hopi lexical entry

A metaschema fragment

The interoperable interpretation

```
<gold:LinguisticSign rdf:about="#element(L28)">
 <gold:form>
   <gold:PhonologicalUnit>
     <gold:orthographicRepresentation>na('at)</gold:orthographicRepresentation>
   </gold:PhonologicalUnit>
 </gold:form>
 <gold:meaning>
   <gold:SemanticUnit>
     <gold:definition>father. The term is applied to one's natural
      father,</gold:definition>
   </gold:SemanticUnit>
 </gold:meaning>
 <gold:grammar>
   <gold:GrammaticalUnit>
     <gold:hasPartOfSpeech rdf:resource="&gold;Noun" />
     <gold:hasFeature rdf:resource="&gold;InalienablyPossessed" />
   </gold:GrammaticalUnit>
 </gold:grammar>
</gold:LinguisticSign>
```

Best practice opens the playing field

- Linguist achieves best practice
 - Deposits resource in XML descriptive markup
- Archive achieves best practice
 - Supports access to that resource
- Service achieves best practice
 - Supports an open protocol on a focused data type
- Analyst can then bridge the interoperation gap
 - Analyst creates and archives a metaschema
 - Service harvests original resource + metaschema

Feb 23, 2006

DGfS 2006, U. of Bielefeld

31

Results to date

- Proof of concept on a small scale using Sesame (an open-source RDF database):
 - Lexicons from 3 languages
 - Interlinear texts from 7 languages
- See papers by Simons et al. at emeld.org
 - Project Documents
 - 2004 Workshop Proceedings
 - 2005 Workshop Proceedings

DGfS 2006, U. of Bielefeld

3. Mining the depths of shallow resources

- The service widely harvests shallow resources
 - E.g. through web crawling or Google API
 - Uses domain knowledge to add precision
- The service can serve at two levels:
 - Direct service to users who use it to access the harvested shallow resources
 - Indirect service through other services by implementing a best-practice (domain-specific) metadata provider

Feb 23, 2006

DGfS 2006, U. of Bielefeld

33

ODIN: Online Database of Interlinear Text

- See paper by Will Lewis at emeld.org
 - 2003 Workshop Proceedings
- Methodology

Feb 23, 2006

- Seed Google search with abbreviations used in glossing
- Keep URL if content has instances of text-gloss-translation
- Use Ethnologue names data to propose language identify
- Service currently reports:
 - 22,263 instances of Interlinear Glossed Text examples
 - from 540 different languages
 - in 1,257 different linguistic documents

DGfS 2006, U. of Bielefeld

Services in a word

- Services give the linguist POWER.
- The best services offer:
 - Precision
 - Openness
 - Web harvesting
 - Enrichment
 - Reach

DGfS 2006, U. of Bielefeld

37

The elements of POWER

Precision

Feb 23, 2006

- ➤ Precision through domain-specific standards.
- Openness
 - Anyone can implement the supporting protocol.
- Web harvesting
 - Harvesting resources from around the Internet.
- Enrichment
 - Adding precision to resources born shallow.
- Reach
 - Searching resources from everywhere at once.

Feb 23, 2006 DGfS 2006, U. of Bielefeld

Conclusion: Toward best practice

- Digital language archiving holds the potential of unparalleled access to information, but only if:
 - Linguists do LOTS MORE to ensure that the resources they create endure far into the future.
 - Archives do MUCH to ensure the preservation of those resources.
 - Services give users POWER to retrieve everything that is relevant (and only what is relevant).
 - The linguistics community embraces the domainspecific standards that support interoperation.

EMELD

Feb 23, 2006 DGfS 2006, U. of Bielefeld