Mining language resources from institutional repositories

Gary Simons
SIL International and Graduate Institute of Applied Linguistics

Steven Bird
University of Melbourne and University of Pennsylvania

Christopher Hirt
SIL International and Payap University

Joshua Hou
University of Washington

Sven Pedersen
Graduate Institute of Applied Linguistics

Digital Humanities 2011, Stanford Univ., 19-22 June 2011
OLAC is an international partnership of institutions and individuals who are creating a worldwide virtual library of language resources by:

- Developing consensus on best current practice for the digital archiving of language resources
- Developing a network of interoperating repositories and services for housing and accessing such resources

Founded in December 2000

- Now has 45 participating archives
- Combined catalog of over 105,000 language resources
The project context

► OLAC: Accessing the World’s Language Resources

 ▪ Collaborative NSF grants awarded to the Graduate Institute of Applied Linguistics (Dallas, TX) and the Linguistic Data Consortium (U. of Pennsylvania)

► Some project outcomes

 ▪ OLAC Metadata Usage Guidelines
 ▪ Infrastructure of metadata checks and metrics to promote use of best practices among participants
 ▪ Faceted search service that exploits best practice
This catalog, developed by the Open Language Archives Community (OLAC), provides access to a wealth of resources, including details of archives, tools, and software, all in one place.

Search for language resources

Sort by:
- Possible Sorts: all

Browse by:
- Archive
- Online
- Language
- Language family
- Geographic region
- Country
- Linguistic type
- Linguistic field

Browse the OLAC records by Geographic region or by Language:

- English (3521)
- Spanish (2925)
- Yuracare (1383)
- Aleut (1125)
- Central Yupik (1116)
- Ocaina (678)
- Ahhtena (618)

26 search facets: 14 controlled + 12 freeform
Problem statement

▶ Tens of thousands of language resources are on the web but can’t be found with conventional search:
 ▪ They may be in the deep web behind search interfaces
 ▪ Languages are not uniquely identified by names alone:
 ▪ Ambiguous names, alternate names, historical names, translations of names — OLAC solves this with ISO 639-3

▶ Major universities now preserve the work of their faculties in institutional digital repositories
 ▪ Can we build a system to automatically find language resources in the catalogs of these deep web sources and enrich the metadata with precise language identification?
Methodology

1. Train a binary classifier to determine whether a metadata record describes a language resource or not.

2. Train a named entity recognizer to identify language names in a metadata record.

3. Use OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) to harvest Dublin Core catalog records from institutional repositories.

4. For each catalog record, if the classifier says it might be a language resource and the named entity recognizer identifies a language, retain the record and enrich the metadata with the ISO 639-3 code for the subject language.
The language resource classifier

- We used MALLET—Machine Learning for Language Toolkit (from UMass Amherst)—to train a maximum entropy classifier.

- Training data:
 - Required a large collection of metadata records that covered the full range of human knowledge and that were already classified as to the nature of their content.
 - We used a collection of over 9 million MARC catalog records from the Library of Congress that was deposited into the Internet Archive by the Scriblio project.
 - We used bag-of-words features extracted from the title and subject headings of each MARC record.
 - To label each record as a language resource or not, we mapped the Library of Congress call number onto “Yes” or “No” based on an analysis of the LC classification system.
We implemented a Python function that:

- Scans the title, subject, and description metadata elements
- Finds longest matches of known language names
- Returns most likely language(s) based on length of match and strength of name

Sources of name data:

- Library of Congress subject headings for individual languages mapped to the corresponding ISO 639-3 codes
- Primary names, alternate names, dialect names from download data at ethnologue.com/codes (minus names that coincide with common words in stoplists of major European languages)
- Translation of major language names into the major languages used most frequently in the institutional repository metadata
The OAI harvester was seeded with 459 base URLs

- Found by querying the UIUC OAI-PMH Data Provider Registry for all providers with the word “university” in their description
- The harvest yielded 5,041,780 Dublin Core metadata records

The binary classifier was applied to each harvested record

- Returns a number between 0 and 1 representing the probability that the resource is a language resource
- Evaluating the results of random samples in successive probability ranges showed the classifier to be reasonably valid
- A random sample of 500 records with \(0.001 < p < 0.01\) yielded no language resources, so all records below \(p=0.01\) were discarded
- This left 71,238 records that might be a language resource
Results: Evaluating the binary classifier

Probability returned by binary language resource classifier

Number of language resources in random sample of 100 records

- Total
- Specific
Next step: Filtering based on language identification

Which of the 71,238 possible language resources should be entered into the OLAC catalog?

Basic strategy:
- Apply the language name recognizer to each record
- If it finds any, accept that record and enrich the record with the most strongly identified language(s).
- Except: filter out records that meet criteria which are found to correlate highly with incorrect results (discovered after preliminary evaluation of performance)

Result: 22,165 records were accepted
The final filtering criteria

1. Reject if it is assigned the special code [qqq] for formal languages and language disorders
2. Reject if it is assigned more than 3 languages
3. Reject if it is not assigned a subject language
4. Reject if it is from a repository specializing in an irrelevant subject
5. Reject if Format describes it as a photo or a physical artifact
6. Reject if it has a probability lower than 3.0%
7. Reject if it is in a Roman script language without a stoplist
8. Accept whatever remains
This record found at eprints.lib.hokudai.ac.jp is enriched with 2 language ids: 1 wrong and 1 right

<olac:olac>
 <dc:creator>Nagayama, Yukari</dc:creator>
 <dc:date>2008</dc:date>
 <dc:identifier>http://hdl.handle.net/2115/39564</dc:identifier>
 <dc:language>en</dc:language>
 <dc:publisher>Slavic Research Center, Hokkaido University</dc:publisher>
 <dc:subject xsi:type="olac:language" olac:code="rus"/>
 <dc:subject xsi:type="olac:language" olac:code="alr"/>
</olac:olac>
Final evaluation of resource classification

<table>
<thead>
<tr>
<th></th>
<th>Accepted by filter</th>
<th>Rejected by filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actually a language resource</td>
<td>175</td>
<td>24</td>
</tr>
<tr>
<td>Not a language resource</td>
<td>47</td>
<td>467</td>
</tr>
</tbody>
</table>

- **Accuracy** = 90%
 (how often it was correct)
- **Recall** = 88%
 (how many of the true resources it found)
- **Precision** = 79%
 (how many of the accepted resources are right)

- Manual evaluation of 1% random sample of all records
Final evaluation of language identification

- Manual evaluation of the 260 language identifications made in the 222 accepted records in the 1% sample

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct identifications</td>
<td>186</td>
</tr>
<tr>
<td>Incorrect identifications</td>
<td>74</td>
</tr>
<tr>
<td>Missing identifications</td>
<td>22</td>
</tr>
</tbody>
</table>

- Recall = 89% *(how many of the actual languages it found)*
- Precision = 72% *(how many of the identifications are right)*
Known problems

Inspecting incorrect identifications reveals the following:

- 35% due to short words in non-English metadata
- 16% due to names used as adjective of ethnicity or place
- 14% due to names (esp. dialects) that are place names
- 12% due to short words missing from English stoplist

Inspecting missing identifications reveals the following:

- 43% due to the weighting heuristics giving the highest weight to the wrong language name
- 33% due to the name used not being in the training data for the language name recognizer (e.g. a non-English name)
Sample discoveries

In the 1% sample, resources from 53 distinct languages were correctly identified, e.g.,
- English (31)
- Chinese (16)
- French (15)
- Japanese (13)
- German (10)
- Spanish (7)
- Latin (6)
- Dutch (5)

And these more exotic languages:
- Ainu
- Basque
- Faroese
- Frisian
- Gothic
- Inuktitut
- Marathi
- Navajo
- Tibetan
- Yapese
- Alutiq (Yupik)
- Alutor (Russia)
- Hawaiian Creole English
- Itonama (Bolivia)
- Middle High German
- Occitan
- Pitcairn English
- Tausug (Philippines)
- Toba Batak
Conclusion

► This approach has mined 22,165 presumed language resources from over 5 million resources held in 459 institutional repositories.

► The currently achieved rates of recall and precision are beginning to yield usable results.

<table>
<thead>
<tr>
<th></th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource identification</td>
<td>88%</td>
<td>79%</td>
</tr>
<tr>
<td>Subject language identification</td>
<td>89%</td>
<td>72%</td>
</tr>
</tbody>
</table>

► However, a number of things can still be done to improve the results further.