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Open Language 
Archives Community

www.language-archives.org
►OLAC is an international partnership of institutions 

and individuals who are creating a worldwide 
virtual library of language resources by:
 Developing consensus on best current practice for the 

digital archiving of language resources
 Developing a network of interoperating repositories and 

services for housing and accessing such resources

►Founded in December 2000
 Now has 45 participating archives
 Combined catalog of over 105,000 language resources



The project context

►OLAC: Accessing the World’s Language Resources
 Collaborative NSF grants awarded to the Graduate 

Institute of Applied Linguistics (Dallas, TX) and the 
Linguistic Data Consortium (U. of Pennsylvania)

►Some project outcomes
 OLAC Metadata Usage Guidelines
 http://www.language-archives.org/NOTE/usage.html

 Infrastructure of metadata checks and metrics to 
promote use of best practices among participants
 Faceted search service that exploits best practice
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Problem statement

► Tens of thousands of language resources are on the 
web but can’t be found with conventional search:
 They may be in the deep web behind search interfaces
 Languages are not uniquely identified by names alone:
 Ambiguous names, alternate names, historical names, 

translations of names — OLAC solves this with ISO 639-3

► Major universities now preserve the work of their 
faculties in institutional digital repositories
 Can we build a system to automatically find language 

resources in the catalogs of these deep web sources and 
enrich the metadata with precise language identification? 



Methodology

1. Train a binary classifier to determine whether a metadata 
record describes a language resource or not.

2. Train a named entity recognizer to identify language names 
in a metadata record.

3. Use OAI-PMH (Open Archives Initiative Protocol for 
Metadata Harvesting) to harvest Dublin Core catalog 
records from institutional repositories.

4. For each catalog record, if the classifier says it might be a 
language resource and the named entity recognizer 
identifies a language, retain the record and enrich the 
metadata with the ISO 639-3 code for the subject language. 
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The language resource 
classifier

► We used MALLET—Machine Learning for Language Toolkit 
(from UMass Amherst) —to train a maximum entropy classifier. 

► Training data:
 Required a large collection of metadata records that covered 

the full range of human knowledge and that were already 
classified as to the nature of their content. 

 We used a collection of over 9 million MARC catalog records 
from the Library of Congress that was deposited into the 
Internet Archive by the Scriblio project.

 We used bag-of-words features extracted from the title and 
subject headings of each MARC record. 

 To label each record as a language resource or not, we 
mapped the Library of Congress call number onto “Yes” or 
“No” based on an analysis of the LC classification system. 



The language name 
recognizer

► We implemented a Python function that:
 Scans the title, subject, and description metadata elements 
 Finds longest matches of known language names
 Returns most likely language(s) based on length of match and 

strength of name

► Sources of name data:
 Library of Congress subject headings for individual languages 

mapped to the corresponding ISO 639-3 codes
 Primary names, alternate names, dialect names from download data 

at ethnologue.com/codes (minus names that coincide with common 
words in stoplists of major European languages) 

 Translation of major language names into the major languages used 
most frequently in the institutional repository metadata



Results: Initial harvest 
and classification

► The OAI harvester was seeded with 459 base URLs
 Found by querying the UIUC OAI-PMH Data Provider Registry 

for all providers with the word “university” in their description
 The harvest yielded 5,041,780 Dublin Core metadata records

► The binary classifier was applied to each harvested record
 Returns a number between 0 and 1 representing the probability 

that the resource is a language resource
 Evaluating the results of random samples in successive proba-

bility ranges showed the classifier to be reasonably valid
 A random sample of 500 records with .001 < p < .01 yielded no 

language resources, so all records below p=.01 were discarded
 This left 71,238 records that might be a language resource 9



Results: Evaluating the 
binary classifier
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Next step: Filtering based 
on language identification

►Which of the 71,238 possible language resources 
should be entered into the OLAC catalog?

►Basic strategy:
 Apply the language name recognizer to each record
 If it finds any, accept that record and enrich the record 

with the most strongly identified language(s).
 Except: filter out records that meet criteria which are 

found to correlate highly with incorrect results 
(discovered after preliminary evaluation of performance) 

►Result: 22,165 records were accepted
11



The final filtering criteria

1. Reject if it is assigned the special code [qqq] for formal 
languages and language disorders

2. Reject if it is assigned more than 3 languages

3. Reject if it is not assigned a subject language

4. Reject if it is from a repository specializing in an  irrelevant 
subject

5. Reject if Format describes it as a photo or a physical artifact

6. Reject if it has a probability lower than 3.0%

7. Reject if it is in a Roman script language without a stoplist

8. Accept whatever remains 12



An enriched record

► This record found at eprints.lib.hokudai.ac.jp is enriched 
with 2 language ids: 1 wrong and 1 right
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<olac:olac>
<dc:creator>Nagayama, Yukari</dc:creator>
<dc:date>2008</dc:date>
<dc:identifier>http://hdl.handle.net/2115/39564</dc:identifier>
<dc:identifier>Acta Slavica Iaponica. 25, 2008, 187-202</dc:identifier>
<dc:language>en</dc:language>
<dc:publisher>Slavic Research Center, Hokkaido University</dc:publisher>
<dc:title>Factors for Language Decline in the Russian Far East:

A Case of the Alutor in Kamchatka</dc:title>
<dc:subject xsi:type="olac:language" olac:code="rus"/>
<dc:subject xsi:type="olac:language" olac:code="alr"/>

</olac:olac>
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Final evaluation of 
resource classification

Accepted 
by filter

Rejected
by filter

Actually a language 
resource 175 24

Not a language 
resource 47 467

► Accuracy = 90%  (how often it was correct) 
► Recall = 88%       (how many of the true resources it found)
► Precision = 79%  (how many of the accepted resources are right)

► Manual evaluation of 1% random sample of all records
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Final evaluation of 
language identification

Correct identifications 186

Incorrect identifications 74

Missing identifications 22

► Recall = 89%       (how many of the actual languages it found)
► Precision = 72%  (how many of the identifications are right)

► Manual evaluation of the 260 language identifications 
made in the 222 accepted records in the 1% sample



Known problems

► Inspecting incorrect identifications reveals the following:
 35% due to short words in non-English metadata
 16% due to names used as adjective of ethnicity or place
 14% due to names (esp. dialects) that are place names
 12% due to short words missing from English stoplist

► Inspecting missing identifications reveals the following:
 43% due to the weighting heuristics giving the highest 

weight to the wrong language name
 33% due to the name used not being in the training data for 

the language name recognizer (e.g. a non-English name)
16



Sample discoveries

► In the 1% sample, 
resources from 53 
distinct languages were 
correctly identified, e.g.,
 English (31)
 Chinese (16)
 French (15)
 Japanese (13)
 German (10)
 Spanish (7)
 Latin (6)
 Dutch (5)

► And these more exotic languages:

 Ainu
 Basque
 Faroese
 Frisian
 Gothic
 Inuktitut
 Marathi
 Navajo
 Tibetan
 Yapese
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 Alutiq (Yupik)
 Alutor (Russia)
 Hawaiian Creole 

English
 Itonama (Bolivia)
 Middle High German
 Occitan
 Pitcairn English
 Tausug (Philippines)
 Toba Batak
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Conclusion

► This approach has mined 22,165 presumed language 
resources from over 5 million resources held in 459 
institutional repositories.

► The currently achieved rates of recall and precision are 
beginning to yield usable results.

► However, a number of things can still be done to 
improve the results further.

Recall Precision
Resource identification 88% 79%
Subject language identification 89% 72%
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