
Computers and the Humanities33: 85–101, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

85

Using Architectural Forms to Map TEI Data into an

Object-Oriented Database

GARY F. SIMONS
Summer Institute of Linguistics, 7500 W. Camp Wisdom Rd., Dallas, TX 75236, USA
E-mail: gary_simons@sil.org

Abstract. This paper develops a solution to the problem of importing existing TEI data into an
existing object-oriented database schema without changing the TEI data or the database schema. The
solution is based on architectural processing. Two meta-DTDs are used, one to define the architec-
tural forms for the object model and another to map the existing SGML data onto those forms. A full
example using a critical text in TEI markup is developed.

1. Introduction

Much of the promise of SGML lies in the fact that descriptively marked up data
can be freely interchanged between different sites and between different soft-
ware systems. Indeed, this is part of the motivation behind the Text Encoding
Initiative’s Guidelines for Electronic Text Encoding and Interchange(Sperberg-
McQueen and Burnard, 1994). Unfortunately, interchange of SGML data between
software systems is not always so easy. This is because, while SGML-aware soft-
ware understands the syntax of the markup, it may not necessarily understand the
semantics. Architectural forms are a mechanism that SGML offers for helping to
bridge this semantic gap.

This paper describes how architectural forms can be used to solve the particular
problem of mapping SGML data into the semantic model of an object-oriented
database. More specifically, the problem is to import existing SGML data into
an existing object-oriented database schema without changing either the SGML
data or the database schema. The target system is an object-oriented database
system named CELLAR (for Computing Environment for Linguistic, Literary,
and Anthropological Research – see SIL, 1998). The solution uses architectural
processing to map the SGML data onto architectural forms that the CELLAR
system can use to construct the appropriate structure of objects.

Section 2 of the paper discusses the basic differences between the SGML
model of data and the object model, and illustrates why the mapping from SGML
elements to objects is not a trivial one. Section 3 introduces architectural forms

86 GARY F. SIMONS

and presents an architecture that maps SGML data onto objects. Section 4 explains
how architectural processing can be used to automatically translate a document
into its corresponding architectural forms. Section 5 gives a complete example of
the automated process by which the SGML data are mapped onto the architectural
DTD via an intermediate meta-DTD that encodes the mapping. The example used
is that of a critical text edition encoded in TEI markup. Finally, section 6 discusses
the results that have been achieved thus far.

2. The SGML Model Versus the Object Model

An SGML document type definition (DTD) has much in common with the concep-
tual model that results from an object-oriented analysis of a problem domain
(Booch, 1994; Coad and Yourdon, 1991). Because of this, it is logical to conclude
that SGML data should be particularly amenable to being imported into soft-
ware that uses an object-oriented data model. This is not a trivial task, however,
since there are some fundamental differences between the SGML model of data
and the object model. In speaking of the “object model of data,” I am referring
specifically to the way object databases (Cattell, 1997) and conceptual modeling
languages (Borgida, 1985) represent information. Such systems replace the simple
instance variables of an object-oriented programming language with attributes that
encapsulate integrity constraints and the semantics of relationships to other objects.

In SGML, the fundamental unit of data representation is the element. An
element may have attributes, but these are limited to simple values that lack
embedded structure. Complex structure is encoded by embedding other elements
within the content of the original element.

In the object model, the fundamental unit of data representation is the object.
Each object is either a primitive object that stores primitive data like a string or a
number, or is a complex object that has attributes. The value of an attribute consists
of embedded objects.

Thus elements recurse through content, while objects recurse through attributes.
That is, complex structures are built in SGML by embedding all the elements for
the parts as a single sequence in the content of the element for the whole. In the
object model, by contrast, the objects for the parts are put into various attributes of
the object for the whole. This fundamental difference in the way the two models
handle complex structure explains why it is not possible to import SGML data
directly into an object database schema without semantic mapping. Elsewhere
(Simons, 1997b, 1997c) I have discussed in greater depth the difference between
the two models and the inadequacy of a default mapping from the one to the other.

This fundamental difference means that the embedding of object within attribute
within object (and so on) of an object database, must be encoded in SGML as
element within element within element (and so on). Thus when mapping from
SGML to objects we are confronted with a fundamental problem:

USING ARCHITECTURAL FORMS TO MAP TEI DATA 87

<document>

 <title>

 <maintitle>Main title</>

 <subtitle>a subtitle</>

 </title>

 <authors>

 <author>

 <name>First Author</>

 <affil>Some Co.</>

 </author>
...

Document

title

authors

. . .

TitleStatement

Person

maintitle

subtitle

name

affiliation

Figure 1. Mapping an SGML document to objects.

• Some elements encode an object.
• Some elements encode an attribute.
• Some elements simultaneously encode both.

Figure 1 illustrates this point. It shows a typical SGML document fragment on
the left and a partial representation of a corresponding object structure on the right.
The 〈title〉 element corresponds to both thetitle attribute of the Document object
and the TitleStatement object which is its value. By contrast, the〈authors〉 element
corresponds to just theauthorsattribute, while the〈author〉 element corresponds to
just the Person object.

The three cases listed above are the most straightforward cases. An SGML
element could also correspond to nothing in the object model, so that the element
markup needs to be ignored and just its content processed. A single SGML element
could correspond to two objects, one embedded within the other. An SGML
attribute might correspond to an object’s attribute. The basic challenge of importing
SGML data into an object database is to determine which of these cases holds
for each of the element types occurring in the data, and then to express formally
how each maps onto the corresponding classes and attributes of the target database
schema.

3. An Architecture for Mapping SGML Data into Objects

The HyTime standard (ISO, 1992; DeRose and Durand, 1994) first introduced the
concept of architectural forms as a way to associate standardized semantics with
elements in user-defined DTDs. HyTime is based on a fixed set of architectural
forms. This approach to dealing with the semantics of markup was so successful

88 GARY F. SIMONS

that the notion of architectural forms has been generalized. The generalized mech-
anism is one of the SGML Extended Facilities that was defined in an annex to the
revised HyTime standard (ISO, 1997). Kimber (1997a) gives a tutorial introduction
to the generalized architecture mechanism.

Now that architectural forms have been generalized, we can apply them to our
problem of expressing the semantics of how SGML elements map onto the object
model. A sampling of other problems to which architectures have been applied
includes making documents accessible to people with print disabilities (Harbo
and others, 1994), creating and managing literate programs (Kimber, 1997b), and
labeling metadata in Internet resources (Kimber, 1997c). See Cover (1998) for an
up-to-date listing of resources relating to architectural forms and their application.

In light of the increasing popularity of XML, it is worth noting that the HyTime
standard has been amended to make it possible to use architectural forms in XML
(Megginson, 1997). InStructuring XML Documents, Megginson (1998a) devotes
three chapters to DTD design with architectural forms. He has also released an
architectural engine for XML (Megginson, 1998b). One can also use an SGML
parser like SP (Clark, 1997) to architecturally process an XML document provided
that it is invoked with the SGML declaration for XML.

An architecture is like a semantic model. It is defined formally by a DTD.
Syntactically, it is a normal DTD, but it is also known as a meta-DTD since it
deals with information at a higher, more abstract level. Each element defined in
an architectural DTD is called anarchitectural formand represents one of the
semantic constructs of the architecture.

Figure 2 gives the DTD for the architecture used to map SGML data onto
CELLAR’s object model. There are two basic element forms in the architecture,
〈object〉 and〈attr〉. Rather than having a third form for the case when an element
corresponds to both an object and an attribute, this case is treated as being a
mapping to an object, and the object form adds an architectural attribute to name
the attribute it also maps to. A third form,〈ignore〉, is used for the case when the
SGML element does not correspond to anything in the target object model so the
element content should be processed as though the start and end tags were not
there. Note that the definition of the architecture is abridged for the sake of this
presentation; the full definition is given elsewhere (Simons, 1997b, 1997c).

The easiest way to explain these forms is by example. Figure 3 shows a version
of the illustrative document of Figure 1 which has been annotated to encode
the mapping onto the object architecture. A special attribute, called thearchitec-
tural form attribute, is added to each element. In this case we name the attribute
“cellar” since it tells which architectural form in the CELLAR architecture the
element corresponds to. For instance, the first element is annotated as:〈document
cellar=object class=Document〉. This indicates that the〈document〉 element corre-
sponds to an object in the CELLAR architecture; furthermore, it is an object of
class Document. The〈title〉 element is annotated as an object of class TitleState-
ment that the belongs in thetitle attribute of the parent (Document) object. The

USING ARCHITECTURAL FORMS TO MAP TEI DATA 89

<!-- CELLAR.DTD (abridged version)
 Meta-DTD of the CELLAR architecture for mapping
 SGML data into CELLAR's object model of data -->

<!ENTITY % content "object | attr | ignore | #PCDATA" >

<!-- --
 -- OBJECT: the element corresponds to an object in CELLAR --
 -- -->
<!ELEMENT object - - (%content;)* >
<!ATTLIST object
 class -- Create this class of CELLAR object --
 CDATA #REQUIRED
 parentAttr -- Put the object in this attr of its parent --
 CDATA #IMPLIED
 contentAttr -- Put embedded objects in this attribute --
 CDATA #IMPLIED
 pcdataClass -- Create this class for embedded PCDATA --
 CDATA "String"
 encoding -- Put embedded strings in this encoding --
 CDATA #IMPLIED
 id -- A unique identifier for this object --
 ID #IMPLIED
 attrName -- Set this attribute of the object ... --
 CDATA #IMPLIED
 attrValue -- ... to this value --
 CDATA #IMPLIED
 attrType -- The value is an IDREF or of named class --
 CDATA "String"

<!-- --
 -- ATTR: the element corresponds to an attribute in CELLAR --
 -- -->
<!ELEMENT attr - - (%content;)* >
<!ATTLIST attr
 contentAttr -- Put embedded objects in this attribute --
 CDATA #IMPLIED
 pcdataClass -- Create this class for embedded PCDATA --
 CDATA "String"
 encoding -- Put embedded strings in this encoding --
 CDATA #IMPLIED >

<!-- --
 -- IGNORE: the element corresponds to nothing in CELLAR; --
 -- ignore it at this level, but process its content --
 -- -->
<!ELEMENT ignore - - (%content;)* >

Figure 2. Meta-DTD for CELLAR’s object model.

〈maintitle〉 element corresponds to the attribute namedmaintitle in CELLAR. The
remainder of the sample follows these same patterns.

Note that one requirement for using this technique is that the SGML data are
marked up with at least the level of granularity that is needed by the object database.
For instance, in the sample in Figure 3, the author’s name maps into the object

90 GARY F. SIMONS

<document ce ll ar=o bj ect c l ass=Document>

 <title cellar=object class=TitleStatement parentAttr=title>

 <maintitle cellar=attr contentAttr=maintitle>Main title</ >

 <subtitle cellar=attr contentAttr=subtitle>a subtitle</>

 </title>

 <authors cellar=attr contentAttr=authors>

 <author cellar=object class=Person>

 <name cellar=attr contentAttr=name>First Author</>

 <affil cellar=attr contentAttr=affiliation>Some Co.</>

 </author>

 </authors>

 ...

</document>

Figure 3. Architecturally annotated SGML document corresponding to Figure 1.

database because the latter expects the full name as a string. If, on the other hand,
the object database were to represent a name as an object with various attributes
for the parts of a name, this technique could not produce the needed result from
the SGML data since architectural processing cannot go into PCDATA content and
parse special notations.

A related limitation of architectural processing is that it cannot insert an archi-
tectural element that has no corresponding element in the client document, not
even when it could be inferred unambiguously from the client document’s struc-
ture. For instance, if the DTD for the sample document in Figure 1 had no
〈title〉 element, but just put〈maintitle〉 and〈subtitle〉 directly within 〈document〉,
then architectural processing would not be able to insert the architectural〈object
class=“TitleStatement”〉 element that would be needed to achieve the proper
mapping into the object model. In general, architectural processing cannot perform
any transformations on the element structure of the client document beyond omit-
ting certain elements. When the mapping to an object database requires major
restructuring, this would need to be done as a preliminary step with a structure
transformation tool.

4. Using Architectural Processing to Translate a Document

The architectural processing feature of an SGML parser is used to translate the
elements of an input document into the corresponding elements of an architec-
ture. The SGML parser reads an input document with its DTD (called theclient
documentand theclient DTD) and produces an output document that conforms to
a different DTD (called thearchitectural documentand thearchitectural DTD).
Figure 4 gives a graphical overview of the process.

With the nsgmls parser from the SP package (Clark, 1997), architectural
processing is invoked by giving the -A command line option. Following the -A
is the name of the architecture to use. The name must be declared in an ARCBASE

USING ARCHITECTURAL FORMS TO MAP TEI DATA 91

Architectural DTD

<!ELEMENT target . . . >
<!ELEMENT target2 . . . >

 ...
Client document Architectural document

<!DOCTYPE client [<!DOCTYPE target
<?ArcBase archName> SYSTEM "arch.dtd" >
-- architectural support decl <target>
 arcDocF = target SGML parser <target2>
 arcFormA = arch
 arcDTD = arch.dtd -- nsgmls -AarchName
%clientDTD;]> ...

<client arch=target>
 <client2 arch=target2>
 ...

 </client2> Client DTD </target2>
</client> </target>

<!ELEMENT client . . . >
<!ELEMENT client2 . . . >

 ...

Figure 4. An overview of architectural processing.

processing instruction in the client document. Following this is thearchitectural
support declarationthat tells the parser how to process the architecture. (The nota-
tion is grossly simplified in the diagram.) This declaration specifies the DOCTYPE
of the architectural document (arcDocF), the architectural DTD (arcDTD), and
the architectural form attribute (arcFormA). In Figure 4, arch is specified as the
architectural form attribute. Thus〈client arch=target〉 means that the corresponding
element in the architectural document is〈target〉. When the parser is performing
architectural processing, it not only translates the elements of the client document
into the corresponding elements of the architecture, but also validates the archi-
tectural document being produced against the architectural DTD to ensure that the
output is a valid instance of the architectural document type. Figure 5 shows the
output of performing architectural processing on the sample document in Figure 3,
where cellar is the architectural form attribute.

The process diagrammed in Figure 4 requires that the client document be
already annotated with the values of the architectural form attribute and other archi-
tectural attributes. This, however, violates our basic requirement that the process for
importing SGML data should not require that we change the SGML data file. This
problem can be solved by performing architectural processing twice, first to add the
architectural attributes to the client document and then to create the architectural
document. The nsgmls parser can do this in one pass by specifying two -A options
on the command line. Figure 6 illustrates this process.

In the first step in Figure 6, the architecture named mapping is invoked. It uses a
mapping DTDto supply the architectural form attribute and any other architectural
attributes for each element type in the client document. The mapping DTD consists
of a series of ATTLIST declarations that supply the needed attributes. For instance,

92 GARY F. SIMONS

<obj ect c l ass=Document>

 <object class=TitleStatement parentAttr=title>

 <attr contentAttr=maintitle pcdataClass=String>Main

title</attr>

 <attr contentAttr=subtitle pcdataClass=String>a

subtitle</attr>

 </object>

 <attr contentAttr=authors>

 <object class=Person>

 <attr contentAttr=name pcdataClass=String>First

Author</attr>

 <attr contentAttr=affiliation pcdataClass=String>Som e

Co.</attr>

 </object>

 </attr>

 ...

</object>

Figure 5. Architectural document corresponding to Figure 3.

Executing: nsgmls -Amapping -Acellar data.sgm >data.clr

Mapping DTD Cellar architecture DTD

Client
document

Process
-Amapping

Architecturally
annotated client
document

Process
-Acellar

Architectural
document

(data.sgm) (transient) (data.clr)

Figure 6. Two-stage architectural processing.

mapping the〈author〉 element of Figure 1 into a Person object would be done with
the following declaration:

〈!ATTLIST author cellar NAME #FIXED object

class CDATA #FIXED Person〉
The output of the first application of architectural processing in Figure 6 is an

architecturally annotated version of the client document. This document is transient
in that it is never written to a file (though it can be written by running just nsgmls
-Amapping). The architecture named cellar is then invoked with the transient docu-
ment as input. The result is the corresponding document that conforms to the
architecture for the CELLAR object model. The entire process is now exemplified
in the next section.

USING ARCHITECTURAL FORMS TO MAP TEI DATA 93

5. From TEI Data File to Object Database: A Complete Example

As stated in the introduction, the goal of this work is to import existing SGML data
into an existing object-oriented database schema without changing the SGML data
or the database schema. This is done by means of a six-step process. The following
six subsections take a complete example through these steps.

The SGML data file used in the example is given in Figure 7. It is a critical
edition in TEI markup of a passage from the Second Epistle of Clement. Note that
a significant portion of the content has been elided in the interest of brevity. (The
Greek text is encoded in TLG beta code.) A fuller treatment of this sample text
along with examples of what can be done with it in the CELLAR environment is
given in an article published previously in this journal (Simons, 1997a).

5.1 COMPARE THE ORIGINAL DTD AND THE CELLAR CONCEPTUAL MODEL

The first step in the process is to compare the DTD for the SGML data file with the
conceptual model for the target database. The purpose is to determine what class
or attribute in the object model corresponds to each SGML element and attribute.
Figure 8 shows the original DTD for the sample TEI data file.

The conceptual model for the CELLAR objects and attributes into which we
want to import the sample data file is diagrammed in Figure 9. The notation and
the model are explained in Simons (1997a). Here suffice it to say that solid arrows
mean “contains” and the dotted arrow means “holds pointers to.”

5.2 CREATE THE MAPPING DTD

The correspondence between the elements and attributes of the original DTD and
the objects and attributes of the CELLAR conceptual model are formally expressed
in the mapping DTD. It is a meta-DTD that consists primarily of ATTLIST decla-
rations for the elements of the original DTD; they serve to set a value for the
architectural form attribute and for the attributes of that form.

The mapping DTD for our example is given in Figure 10. The〈?ArcBase cellar〉
processing instruction declarescellar to be the name of the base architecture.
Following this is the architectural support declaration. It consists of a notation
declaration followed by an attribute definition list that sets options that control
the architecture engine. In this case,object is the top-level document element in
the architectural document (ArcDocF),cellar is the architectural form attribute
(ArcFormA), cellarNamesis the “attribute renamer” attribute (ArcNamrA; see
below for an explanation), andcellar.dtd (see Figure 2) is the architectural DTD
(ArcDTD). Like the DTD for the original document, the mapping DTD is also for
〈!DOCTYPE tei.2〉; thus the original DTD is included in full without modification
at the end.

The bulk of the mapping DTD consists of mapping rules expressed as ATTLIST
declarations. In addition to the features described above in section 3, the mapping

94 GARY F. SIMONS

<!DOCTYPE TEI.2 SYSTEM "textcrit.dtd">
<TEI.2>
<text>
<front>
<docTitle>2 Clement, chapter 7</docTitle>
<witlist>
<wit id=A type=Manuscript>Codex Alexandrinus
<bibl>A Greek uncial of the fifth century. Housed in the British
Museum. Published in: The Codex Alexandrinus in reduced photographic
 facsimile, with an introduction by F. G. Kenyon, London 1909.
</bibl></wit>
<wit id=C type=Manuscript>Codex Constantinopolitanus
 <bibl> . . . </bibl></wit>
<wit id=S type=Manuscript>Syriac Version
 <bibl> . . . </bibl></wit>
<wit id=L type=Edition>Lightfoot 1890
<bibl>Lightfoot, J. B. 1890. The Apostolic Fathers: Clement,
Ignatius, Polycarp (2nd edition). Part One: Clement, volume 2, pages 210-
261.
Macmillan. (Reprinted 1989 by Hendrickson Publishers, Peabody, MA)
</bibl></wit>
<wit id=Lb type=Edition>Loeb edition
 <bibl> . . . </bibl></wit>
<wit id=B type=Edition>Bihlmeyer 1970
<bibl> . . . </bibl></wit>
<wit id=W type=Edition>Wengst 1984
 <bibl> . . . </bibl></wit>
</witlist>
</front>
<body>
<div n=7>
<!-- ***************** Verse 1 ********************* -->
<s n=1>
w(/ste
<app><rdg wit='A L Lb B'>ou)=n</rdg>
 <rdg wit='C S W'><omit></rdg></app>
a)delfoi/
<app><rdg wit='A L Lb B'>mou</rdg>
 <rdg wit='C W'><omit></rdg></app>
a)gwnisw/meqa ei)do/tej, o(/ti e)n xersi\n o(
<app><rdg wit='C S L Lb B W'>a)gw\n</rdg>
 <rdg wit='A'>ai)w/n</rdg></app>
kai\ o(/ti ei)j tou\j fqartou\j a)gw=naj kataple/ousin
polloi/, a)ll' ou) pa/ntej stefanou=ntai,
<app><rdg wit='C L Lb B W'>ei) mh\</rdg>
 <rdg wit='A'>oi(mh/</rdg>
 <rdg wit='S'>ei) mh\ mo/non</rdg></app>
oi(polla\ kopia/santej kai\ kalw=j a)gwnisa/menoi.
</s>
<!-- and so forth for remaining verses -->
</div>
</body></text>
</TEI.2>

Figure 7. The sample TEI data file.

rules in Figure 10 use these additional features of the CELLAR architecture (see
Figure 2):

• The “attribute renamer” (see, for instance,cellarNamesunder〈wit〉) takes a
list of paired names. The architectural attribute which is the first member of
a pair takes on the value of the client attribute which is the second member.

USING ARCHITECTURAL FORMS TO MAP TEI DATA 95

<!-- TextCrit.DTD

 A DTD for encoding a text critical edition. All tags
 are from the Text Encoding Initiative guidelines.
 The content models have been simplified to use only
 the tags needed for the sample text of II Clement.
 The aim is to faithfully represent the TEI scheme of
 markup without having to deal with the huge TEI DTD.

 This DTD reflects the "Parallel segmentation method"
 of encoding—see TEI Guidelines, section 19.2.3. -->

<!ELEMENT TEI.2 - - (text) >

<!ELEMENT text - - (front, body) >

<!ELEMENT front - - (docTitle, witList) >

<!ELEMENT docTitle - - (#PCDATA) >

<!ELEMENT witList - - (wit+) >

<!ELEMENT wit - - (#PCDATA, bibl?) >
<!ATTLIST wit id ID #REQUIRED
 type CDATA #REQUIRED >

<!ELEMENT bibl - - (#PCDATA) >

<!ELEMENT body - - (div+) >

<!ELEMENT div - - (s+) >
<!ATTLIST div n CDATA #IMPLIED >

<!ELEMENT s - - (#PCDATA | app)+ >
<!ATTLIST s n CDATA #IMPLIED >

<!ELEMENT app - - (rdg+) >

<!ELEMENT rdg - - (#PCDATA | omit) >
<!ATTLIST rdg wit IDREFS #REQUIRED >

<!ELEMENT omit - O EMPTY >

Figure 8. The DTD for the sample TEI data file.

96 GARY F. SIMONS

CriticalText

title CriticalTextChapter CriticalTextVerse

body n n
String

contents contents

TextVariation

Reading

readings witnesses

text

Authority

authorities siglum

description

source

 Manuscript Edition

{

Figure 9. The target conceptual model in the object database.

Thus the first pair defined for〈wit〉 says that the name for theclassof the
object to create comes out of thetypeattribute of the client element.

• The three architectural attributesattrName, attrType, and attrValue work
together to map an attribute of the client element onto an attribute of the target
object. When theattrTypeis IDREFS (as under〈rdg〉), the resulting value is a
set of pointers to the objects associated with the given IDs.

• The encodingarchitectural attribute allows one to build a multilingual data-
base (Simons and Thomson, 1998). For instance, the declaration under〈s〉
says that all of the strings in the content of〈s〉 (including all its subelements)
should be created with the CELLAR language encoding named “GKOb” (for
ancient Greek, beta code).

5.3 CREATE A CLIENT DTD THAT INVOKES ARCHITECTURAL PROCESSING

Our sample data file uses a DTD in the filetextcritt.dtd. We must define an alternate
version of this DTD which invokes the desired architectural processing features.
The result is given in Figure 11. Note that this DTD does not modify the orig-
inal declarations for the elements and attributes of the client DTD in any way.
Rather, it duplicates them exactly by including the original DTD in full at the end.
The purpose of this version of the DTD is to declare that the architecture named

USING ARCHITECTURAL FORMS TO MAP TEI DATA 97

<!-- map-textcrit.dtd
 This maps textcrit.dtd onto CELLAR
 architectural forms -->

<!afdr "ISO/IEC 10744:1992"
 --Allow multiple ATTLIST declarations-- >

<?ArcBase cellar>
<!ENTITY % cellarDTD SYSTEM "cellar.dtd" >
<!NOTATION cellar SYSTEM>
<!ATTLIST #NOTATION cellar
 arcDocF NAME #FIXED object
 arcFormA NAME #FIXED cellar
 arcNamrA NAME #FIXED cellarNames
 ArcDTD CDATA #FIXED "%cellarDTD" >

<!ATTLIST TEI.2
 cellar NAME #FIXED object
 class CDATA #FIXED CriticalText >

<!ATTLIST text
 cellar NAME #FIXED ignore >

<!ATTLIST front
 cellar NAME #FIXED ignore >

<!ATTLIST docTitle
 cellar NAME #FIXED attr
 contentAttr CDATA #FIXED title >

<!ATTLIST witList
 cellar NAME #FIXED attr
 contentAttr CDATA #FIXED authorities >

<!ATTLIST wit
 cellar NAME #FIXED object
 cellarNames CDATA #FIXED "class type
 attrValue id"
 attrName CDATA #FIXED siglum
 attrType CDATA #FIXED String
 contentAttr CDATA #FIXED description
 -- id automatically preserved from
 client attr of same name -- >

<!ATTLIST bibl
 cellar NAME #FIXED attr
 contentAttr CDATA #FIXED source >

<!ATTLIST body
 cellar NAME #FIXED attr
 contentAttr CDATA #FIXED body >

<!ATTLIST div
 cellar NAME #FIXED object
 class CDATA #FIXED CriticalTextChapte r
 contentAttr CDATA #FIXED contents
 attrName CDATA #FIXED n
 attrType CDATA #FIXED String
 cellarNames CDATA #FIXED "attrValue n" >

<!ATTLIST s
 cellar NAME #FIXED object
 class CDATA #FIXED CriticalTextVerse
 contentAttr CDATA #FIXED contents
 attrName CDATA #FIXED n
 attrType CDATA #FIXED String
 cellarNames CDATA #FIXED "attrValue n"
 encoding CDATA #FIXED GKOb >

<!ATTLIST app
 cellar NAME #FIXED object
 class CDATA #FIXED TextVariation
 contentAttr CDATA #FIXED readings >

<!ATTLIST rdg
 cellar NAME #FIXED object
 class CDATA #FIXED Reading
 contentAttr CDATA #FIXED text
 attrName CDATA #FIXED witnesses
 attrType CDATA #FIXED IDREFS
 cellarNames CDATA #FIXED "attrValue wit" >

<!ATTLIST omit
 cellar NAME #FIXED object
 class CDATA #FIXED String >

<!ENTITY % originalDTD SYSTEM "textcrit.dtd" >
%originalDTD;

Figure 10. The meta-DTD for mapping the TEI data into the object architecture.

98 GARY F. SIMONS

Figure 11. A client DTD that invokes architectural processing.

mapping is to be used. This is done with the〈?ArcBase mapping〉 processing
instruction. The architectural support declaration that follows specifies that〈TEI.2〉
is the generic identifier for the document element of the architectural document
(ArcDocF), and and thatmap-textcrit.dtdis the file that contains the architectural
DTD (ArcDTD). Note that for this invocation of the architectural processor, the
architectural document and the architectural DTD are what Figure 6 calls the
annotated client document and the mapping DTD respectively.

5.4 ASSOCIATE THE CLIENT DOCUMENT WITH THE MODIFIED DTD

Before performing the final step of automatic translation, the client document
instance (in Figure 7) must be changed to use the modified DTD defined in the
preceding step. That is,

〈!DOCTYPE TEI.2 SYSTEM “my-textcrit.dtd”〉
〈TEI.2〉
〈!– the content is as in Figure 7 –〉

〈/TEI.2〉

5.5 RUN THE ARCHITECTURE ENGINE TO TRANSLATE THE DOCUMENT

The next step is to run the architecture engine to perform the translation of the client
document instance into an architectural document instance. The parsers in the SP
family (Clark, 1997) are able to do this. For instance, the following command line

sgmlnorm -Amapping -Acellar clement.sgm

translates the client document instance into the corresponding document that uses
the object markup system of the CELLAR architecture. A fragment of the output
is given in Figure 12; compare this to the original file in Figure 7.

USING ARCHITECTURAL FORMS TO MAP TEI DATA 99

<obj ect c l ass=" Cr i t i ca l Text">
 <attr contentAttr="title" pcdataClass="String">
 2 Clement, chapter 7</attr>
 <attr contentAttr="authorities">
 <object class="Manuscript" id="A"
 contentAttr="description" pcdataClass="String"
 attrName="siglum" attrType="String" attrValue="A">
 Codex Alexandrinus
 <attr contentAttr="source" pcdataClass="String">
 A Greek uncial of the fifth century ... </attr>
 </object>
 <!-- The other six authorities -->
 </attr>
 <attr contentAttr="body">
 <!-- The CriticalTextChapter and its conetnts -->
 </attr>
</object>

Figure 12. The sample data translated to the object architecture.

5.6 PARSING THE ARCHITECTURAL DOCUMENT INTO CELLAR

The final step in the process is to run a method of the CELLAR system that invokes
a data input parser that converts the architectural document instance into the corre-
sponding structure of objects. The input to the CELLAR parser is the ESIS output
file of thensgmlsparser. At the heart of the implementation is a recursive function
of 125 lines that processes one element at a time from the ESIS stream. This func-
tion relies on another 125 lines of code in smaller supporting functions. The source
code for this parser is listed in full and explained in an electronic working paper
(Simons, 1997b).

6. Conclusion

The CELLAR architecture that has been implemented is actually richer than what
is presented above. It also handles cases where: (1) an element does not correspond
to anything in the object model so that it must be discarded along with all its
content, (2) an element actually corresponds to two objects (one embedded within
the other), and (3) the exact mapping relationship is conditioned by the context. The
full architecture and a number of complete examples are available in an electronic
working paper (Simons, 1997b). The working paper includes all the files needed to
run the critical text example discussed in this paper.

The results to date have been promising. The goal of developing a general
solution to the problem of importing SGML data into an existing object database
schema has been achieved. Given the fact that the method permits superfluous
markup to be ignored and unmappable elements to be discarded altogether, it
is always possible to achieve a translation from an SGML file into a structure
of objects in the database. However, important information could be lost in the

100 GARY F. SIMONS

process. In the final analysis, the usefulness of the result depends on the degree
of congruence between the conceptual model of the markup for the source data in
SGML and that of the schema for the target object database.

Acknowledgments

I am deeply indebted to my colleague Robin Cover who has helped in many ways
over the course of this project. He has gone the extra mile in helping me to find
resources and in offering useful feedback and encouragement.

References

Booch, G.Object-Oriented Analysis and Design with Applications, 2nd ed. Redwood City, CA:
Benjamin/Cummings Publishing Co., 1994.

Borgida, A. “Features of Languages for the Development of Information Systems at the Conceptual
Level”. IEEE Software, 2(1) (1985), 63–72.

Cattell, R.G.G. et al.The Object Database Standard 2.0. San Francisco: Morgan Kaufman, 1997.
Clark, J.SP: An SGML System Conforming to International Standard ISO 8879 – Standard Gener-

alized Markup Language, version 1.2, 1997〈http://jclark.com/sp/〉. See especially “Architectural
Form Processing”〈http://jclark.com/sp/archform.htm〉.

Coad, P. and E. Yourdon.Object-Oriented Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall,
Inc, 1991.

Cover, R. “Architectural Forms and SGML/XML Architectures”.The SGML/XML Web Page, 1998
〈http://www.sil.org/sgml/topics.html#archForms〉.

DeRose, S. and D. Durand.Making Hypermedia Work: A User’s Guide to HyTime. Boston: Kluwer
Academic Publishers, 1994. See especially pages 79–90.

Harbo, K., J. Engelen, F. Evenepoel and B. Bauwens. “Document Processing Based on Architectural
Forms with ICADD as an Example”. A paper presented at the SGML BeLux ’94 Conference,
1994〈http://www.sgmlbelux.be/94/5archfrm.html〉.

ISO. Hypermedia/Time-based Structuring Language: HyTime, ISO/IEC 10744. Geneva: Interna-
tional Organization for Standardization, 1992.

ISO. “Architectural Form Definition Requirements (AFDR)”. Annex A.3 of ISO/IEC N1920,Infor-
mation Processing – Hypermedia/Time-based Structuring Language (HyTime), 2nd ed. 1997-
08-01. Geneva: International Organization for Standardization, 1997〈http://www.ornl.gov/sgml/
wg8/docs/n1920/html/clause-A.3.html〉.

Kimber, W. E. “A Tutorial Introduction to SGML Architectures”. An ISOGEN International
Corporation workpaper, 1997a〈http://www.isogen.com/papers/archintro.html〉.

Kimber, W. E. “An Approach to Literate Programming with SGML Architectures”. An ISOGEN
International Corporation Workpaper, 1997b〈http://www.isogen.com/papers/litprogarch/
litprogarch.html〉.

Kimber, W. E. “Using the RDF Data Model as an SGML Architecture”. An ISOGEN International
Corporation workpaper, 1997c〈http://www.isogen.com/demos/RDF/rdfarch.html〉.

Megginson, D. “XML Architectural Forms”. A posting to the XML-DEV mailing list, 13 December
1997〈http://www.lists.ic.ac.uk/archives/xml-dev/9712/0181.html〉.

Megginson, D.Structuring XML Documents.Charles F. Goldfarb Series on Open Information
Management. Upper Saddle River, NJ: Prentice Hall, 1998a.

Megginson, D. “Using the XAF Package for Java”. A Megginson Technologies Workpaper, 1998b
〈http://www.megginson.com/XAF/〉.

SIL. CELLAR Web Page. Summer Institute of Linguistics Web Site, 1998〈http://www.sil.org/cellar〉.

USING ARCHITECTURAL FORMS TO MAP TEI DATA 101

Simons, G. “Conceptual Modeling Versus Visual Modeling: A Technological Key to Building
Consensus”.Computers and the Humanities, 30(4) (1997a), 303–319.

Simons, G. “Importing SGML Data into CELLAR by Means of Architectural Forms”. A Summer
Institute of Linguistics Workpaper, 1997b〈http://www.sil.org/cellar/import/〉.

Simons, G. “Using Architectural Forms to Map SGML Data into an Object-Oriented Data-
base”. InProceedings of SGML/XML ’97, Washington, D.C., 8–11 December 1997.Graphics
Communications Association, 1997c, pp. 449–459.

Simons, G. and J. Thomson. “Multilingual Data Processing in the CELLAR Environment”. In
Linguistic Databases.Ed. J. Nerbonne, Stanford, CA: Center for the Study of Language and
Information, 1998, pp. 203–234. (The original working paper is available at〈http://www.sil.org/
cellar/mlingdp/mlingdp.html〉.)

Sperberg-McQueen, C.M. and L. Burnard.Guidelines for Electronic Text Encoding and Interchange.
Chicago and Oxford: Text Encoding Initiative, 1994.

