DATA ABSTRACTION

A BASIC IMPLEMENTATION FOR PROBLEM SOLVING

Editor's note: For more information and background reading on data abstraction, see the article by Niklaus Wirth in the August issue, "History and Goals of Modula-2."

PROGRAMMERS, AND INDEED problem solvers in general, have two basic strategies for attacking new problems: decomposition and abstraction. These strategies offer two different ways of solving a complex problem by simplifying it in some way. Decomposition is the strategy embodied by the time-honored Machiavellian dictum to "divide and conquer"—solving large problems by dividing them into smaller, simpler ones that can be solved independently. Abstraction is the strategy of ignoring certain details about the original problem so as to transform it into a simpler and more general one.

For example, consider the problem of computing the sum of the squares of two numbers, 3 and 4 (that is, compute $3^2 + 4^2$). We first simplify the problem by decomposing it into a sequence of three simpler problems: (1) compute the square of 3, (2) compute the square of 4, and (3) add the two results together. We assume that the final step of addition is sufficiently fundamental that we need not consider it further. However, the first two subproblems can be restated in more simple terms. "Compute the square of 3" means the same as "multiply 3 by 3," and "compute the square of 4" means the same as "multiply 4 by 4."

We may now apply the principle of abstraction to simplify the problem further. We see that there is something essentially the same about computing the square of 3 and computing the square of 4. By abstracting away the particular details of the 3 versus the 4, both subproblems can be solved by a single more general solution, namely, that of computing the square of n, where n can represent any number.

INFORMATION HIDING AND ABSTRACT DATA TYPES

The essential design methodology for data abstraction is known as information hiding. The approach was first proposed by D. L. Parnas in 1972 (see reference 4). He proposed that the behavior of software modules be specified completely in terms of their external effects. Such a module hides a secret, namely, the representation of the data object that the module manages. To the outside user, the module provides a set of access functions that are used to create, alter, or observe instances of the abstract data object. There is no way for anyone or anything but the implementation of the module itself to access the objects, other than through those access functions.

The type of module that Parnas first described has come to be known as an abstract data type. It is abstract because the details of the concrete representation of the data type are unknown to the user. It has also been called an encapsulated data type, since the details of implementation are locked away from the user inside a capsule. The functions that access an abstract data type are now commonly referred to as its operations.

An abstract data type, therefore, presents itself to the user not as a data structure, but as a collection of procedural abstractions. These are the operations that allow one to create, observe, or alter objects of the abstract type. The task of implementing an abstract data type then consists of determining a concrete representation for objects of the type and writing the procedural abstractions that operate on objects thus represented.

THE INFORMAL SPECIFICATION OF ABSTRACT DATA TYPES

Two methods for specifying the behavior of abstract data types have emerged. The first is an informal approach that uses algebraic statements that are precise and unambiguous. Both approaches are described in turn.

Barbara Liskov gives a complete example of the informal method in her paper "Modular Program Construc-
Using Abstraction." (See reference 3.) In Liskov's informal approach, the specification of a data abstraction has three parts: a header that names the data abstraction and its operations; a brief description of the data abstraction as a whole; and a specification for each of the operations. Each of the operations is a procedural abstraction. The specification of a procedural abstraction may have four parts: a header; a modifies line; a requires line; and an effect line. The header defines how the procedure interfaces with the outside world, that is, its name, the order and types of its inputs and outputs, and the error conditions it signals. The modifies line defines which of the inputs may be modified by the procedure. The requires line defines any assumptions that are made about the calling environment. The effect line describes what the operation is intended to do.

Figure 1 gives some sample specifications for procedural abstractions based on Liskov's approach.

We may now illustrate the specification of a data abstraction. Figure 2 gives a sample specification of a data type called intset (set of positive integers). Note the three parts of the specification: the header that names the data type and lists its operations; a brief description of the data type as a whole; and the specifications for each of the operations.

The Formal Specification of Data Abstractions

The formal approach to specifying data abstractions defines an abstract (continued on page 414)
type in terms of an algebra. In the general theory of algebras, an algebra is a pair \(< A, F >\), where \(A \) is a non-empty set and \(F \) is a family of operations on \(A \). For instance, the familiar algebra of grade school mathematics is defined by the set of real numbers and the operations of addition, subtraction, and so on. Since an abstract data type consists of a set of objects that carry the type and the operations on those objects, it is easy to see how abstract data types lend themselves to definition in terms of an algebra.

The meaning (or the effect) of the operations is defined as a set of formal axioms that state the relationships among the operations. The reduction of the operations' meanings to a set of axioms makes it possible to reason formally about the correctness of a design before it is implemented. This is one of the productive ways of using this approach in program design.

The algebraic approach to specifying abstract data types is rigorously defined by John Guttag and J. J. Horning (see reference 1) and consists of two parts: a syntactic specification and a semantic specification. The syntactic specification defines how the type interfaces with the outside world: it defines the name of the type, the names of all its operations, and the types of the domains (inputs) and ranges (outputs) of the operations. Figure 3 illustrates the syntactic specification for the abstract type intset.

The operations on any data type fall into two classes: generator operations and inquiry operations. The generators are those operations that produce an object of the type of interest (for example, intset). The inquiry operations focus on objects of interest but produce a result that is of a different type (for example, Boolean). The blank line in the example of figure 3 separates the two classes of operations. Within the set of generators there is a subset called basic generators that are sufficient to generate any object of the type of interest. The basic generators, create and insert, are marked in figure 3 with a preceding asterisk.

The semantic specification of the operations consists of a set of axioms that define the meaning of the operations by stating their relationships to one another. The axioms are presented as equations in which the left-hand side specifies an expression to be defined and the right-hand side gives its meaning. For the basic generators, no definitions are written; they are assumed as given. Thus we first write axioms that define the meaning of the non-basic generators (for example, remove); the right-hand sides of these equations must eventually be reduced to expressions involving only basic generators. Then

Get Productive!

With these new how-to-do-it books

Apple to IBM PC Conversion Guide
by Richard Steck. The first book to show Apple users how to convert Apple programs and peripherals to IBM PC use.
18047, $11.95

Database and File Management Systems for the Microcomputer
18088, $15.95

Creating the Perfect Database Using DB MASTER
by Trish McClelland. Outlines a tested process you can use to create a database using DB MASTER on your Apple or IBM PC.
18039, $17.95

The ABCs of Lotus 1-2-3
by Bill Kling. This step-by-step tutorial for beginners helps you put 1-2-3 to work immediately in your business.
15996, $18.95

To order, contact your local bookstore or computer store, or contact

Scott, Foresman and Company
Professional Publishing Group,
Dept. BY-2
1900 East Lake Avenue
Glenview, IL 60025
312/729-3000, x2208

For Canadian orders, please contact
Sage Publishing Company
164 Commander Blvd.,
Agincourt, Ontario M1S 3C7

(data abstractions continued from page 131)
we provide axioms that define the meaning of applying each inquiry operation to each of the basic generators. Note that since the meaning of any nonbasic generator can be expressed in terms of basic generators alone, there is no need to write axioms defining the application of inquiry operations to nonbasic generators. Figure 4 gives a sample semantic specification for the type insts.

The equal sign used in the axioms is to be read as "means the same thing as."

Note that there are three sets of axioms, one for each nonbasic generator and inquiry operation that must be defined. Each is defined in terms of two axioms, one for each of the two basic generators of the type of interest.

The definition of isempty is easy to understand. If an inst is, were generated by create, then the set has no members yet, and the expression empty(s) means the same thing as T, or true. If the instset was generated by insert, then the set must have members, and empty means the same thing as F, or false.

Remove and ismember use a basic generator of type Boolean named equal. It tests two integers for equality. In conjunction with this Boolean generator, they use the if-then-else operation that is defined by the following two axioms:

if T then a else b = a
if F then a else b = b

That is, "if T then a else b" means the same thing as (or, can be reduced to) a, and "if F then a else b" means simply b. In other words, if the Boolean condition reduces to true then the whole expression reduces to the then clause, otherwise to the else clause.

Both remove and ismember are defined recursively, that is, in terms of themselves. For instance, the second axiom for ismember says that if the integer i is not equal to the first item in the instset generated by "insert(i,s)" then the expression "ismember(i, insert(i,s))" means the same thing as "ismember(i,s)". We then apply the
same axioms to this simplified expression to reduce it ultimately to T or F. The recursive application of the axioms is easily illustrated. For instance, imagine an intset of three members: \{1,2,3\}. In the language of our axioms, this set would be represented by the expression:

\text{insert}(1, \text{insert}(2, \text{insert}(3, \text{create})))

We now want to test if 4 is a member of the set. This test is equivalent to the expression:

\text{ismember}(4, \text{insert}(1, \text{insert}(2, \text{insert}(3, \text{create}))))

To discover what this expression means, we simplify it by applying the axioms repeatedly until it can be reduced no further. Figure 5a illustrates this process; we see that the expression ultimately reduces to F, or false. Similarly, we can test if 2 is a member of the set. This is done in figure 5b where we see that the result is T, or true.

These illustrations demonstrate the potential of the method for giving us a rigorous way to reason about the meaning and ultimately the correctness of program designs. The sequences of derivations in figure 5 are actual proofs that "ismember(4, \{1,2,3\})" means false and that "ismember(2, \{1,2,3\})" means true.
a formal proof, we would also need to list with each reduction a reference to the axiom used.

These examples should make it clear that the axioms are expressed rigorously enough that a computer could help us in the tedious work of reducing expressions as we reason and test our designs. In fact, the axioms could be implemented directly on a substitution (or reduction) machine as a way of testing the design. Cristoph Hoffman and Michael O'Donnell describe just such a system in their article, "Programming with Equations" (see reference 2). Certainly the specification of data abstractions, whether by formal or informal means, is a powerful new tool for software designers.

IMPLEMENTING ABSTRACT DATA TYPES IN BASIC

We now turn our attention to the practical application of data abstraction by implementing two versions of the interst abstractions in BASIC. BASIC lacks by no means an ideal language for implementing data abstractions. However, in as much as it is the lingua franca of personal computing, there is perhaps no better way of demonstrating the principles of data abstraction to a general audience. Not only should this exercise illustrate the benefits of the data-abstraction technique, it should also demonstrate that with discipline, a programmer can produce good code in BASIC that is maintainable and portable.

BASIC lacks two things that data abstraction needs: parameterized procedure calls (for invoking the operations) and limited looping of variables (to support information hiding). Neither shortcoming is insurmountable: both are solved by requiring a more careful use of variables. Unfortunately, this puts a greater responsibility on the programmer than would be required by more modern languages and consequently increases the opportunity for programming errors.

The variables used in a BASIC implementation of an abstract data type fall into three categories: variables used to pass parameters to, and return values from, the operations; variables used in the concrete representation of the abstract type; and variables used locally in the implementation of the operations. Unfortunately, all variables in BASIC have a global scope and so nothing can be used without reference to how it is used elsewhere in the program. The first category of variables defines the user's interface with the operations of the data type. These must be known and understood in order to use the data type. The second and third categories need not be understood by the user, but their names must be known.
The programmer must know what variables are used in the implementation of the data type, in order to avoid abusing the type by inadvertently using one of these variables for a different purpose elsewhere.

In a pure information-hiding environment this would not be the case. When a data abstraction truly hides the concrete representation of a type, then the way one type is represented does not interfere with how another is. But in BASIC this does not come automatically since all variables have a global scope and the representation of one type can therefore interfere with another if the variables are not unique. The BASIC programmer must therefore be content with a weaker abstraction that hides the meaning and use of the data structures that implement an abstract type but cannot hide their names.

After an abstract data type has been specified, as discussed in the preceding sections, there are three steps in its implementation: (1) define the user interface, (2) define the concrete representation, and (3) implement the operations. Each of these steps will be considered in turn.

DEFINING THE USER INTERFACE

The user interface refers to what a person must know in order to invoke the operations of the data type. For each operation, the following items must be defined: the line number where the subroutine begins, the variables in which input parameters are passed to the operation, the variables in which values are returned, and the variables in which exception codes are signaled. All of this information can be conveyed in a one-line REM (remark) statement that serves as a header for the subroutine. (The version of BASIC used in the listing below allows ' as shorthand for REM.)

Figure 6 illustrates a possible definition of the user interface for the abstract type intset. Note, for instance, the header for the operation "insert." The address of the subroutine is identified as line 1200. The input parameters (a set identifier and an integer to insert into the set) are passed in the variables S and X respectively. The operation returns s as the set identifier of the resulting set. The operation may signal one of three exception codes; this is done with three variables that return a Boolean value. If one of these variables has a value of true when the subroutine returns, then that condition has occurred. Thus the insert operation may signal "not a valid set" in NS, "not a valid integer" in NI, or "no more room" in NR.

(continued)
Note also that figure 6 defines four new operations on type intset: display, kill, intersect, and union. Display prints the contents of a set on the screen. Kill deletes an existing set. Intersect produces a new set that is the intersection of two existing sets. Union produces a new set that is the combination of two existing sets. These operations provide a fuller environment for testing our implementations of the intset abstraction.

Using the Abstract Data Type

With the design of the user interface in hand, we know enough to write a program that uses the type. Figure 7 gives the overall design for a program to test an implementation of intset. (It overlooks the details of what to do when an exception is signaled.) The test program repeatedly takes a one-letter command and two numerical arguments, executes the named operation, and displays the resulting set.

See listing 1 for the test program. As an example of how to use an operation, consider the use of insert in lines 410 and 420. The operation is invoked by GOSUB 1200, but before calling the subroutine we must pass the parameters. The interface requires

Figure 6: User interface for abstract data type intset.
that the set identifier be passed in S and the integer to insert in X, thus the code: $\text{S} = \text{P1.X} = \text{P2}$. In line 420, the statement $\text{GOSUB 1600 calls display. This too requires a set identifier in S but since insert returns with the current set in S, there is no need for an assignment statement to pass the parameter. As long as S was not an invalid set identifier, that is, as long as $\text{NS} = \text{false}$, we display the resulting contents of set S. It is assumed that all exception conditions will generate an error message when they are discovered by intset. If NI or NR occurs, a message will be given, but we still want to display the current status of S. The use of the other operations follows the same principles.

It is important to note that we were able to write a program using intset before we decided how the type is to be represented or implemented. This is the power of information hiding and data abstraction at work. As long as we stick to the interface definition in figure 6 when we implement the data type, the test program will work.

There is, however, one slight complication brought on by the global scoping of all variables in BASIC. Our test program is guaranteed to work only if we avoid variable conflicts. The test program happens to use three variables of its own that are not part of the intset interface. These are C5, P1, and P2. The test program is

Figure 7: Design for program to test an implementation of intset.
guaranteed, therefore, only if the implementation of intset stays away from these three variable names. Conversely, if we begin with an already implemented data type and want to write a program that uses it, that program may not use any variable as a free variable that is used in the implementation of the data type.

Defining the Concrete Representation

The second step in implementing an abstract data type is to define the concrete representation. A straightforward representation for integer sets is to store them in a matrix where each row represents a set and the columns hold individual set elements. A value of \(-1\) means that the matrix cell is empty; a positive integer is a set element. A value of \(-1\) in column 0 means that the whole row is unused.

Note that in figure 6, the first operation is not coded until line 1100. The lines between 1000 and 1100 are reserved for comments that describe the concrete representation, followed by an initialization subroutine that sets up the storage space for the data type as required by the method of representation. This subroutine is the first thing called by the test program of listing 1.

Listing 2 gives a full implementation of intset with an underlying matrix representation of 11 sets (in rows 0 to 10) with 10 elements each (in columns 1 to 10). Note lines 1000 to 1040, which are comments describing the method of representation, and lines 1050 to 1080, which define an initialization routine that sets up the storage space for intsets.

Implementing the Operations

Now we are ready for the third step, implementing the operations. The headers defined for the user interface (see figure 6) serve as the first lines for the subroutines that implement each of the operations. Given the representation of the data type and the variables specified in the header for parameter, result, and exception code passing, the implementation of the operations falls into place. See listing 2 for the complete implementation of the operations. Note that the implementation makes use of two private subroutines (at lines 2000 and 2100) for checking the validity of parameters \(s\) and \(x\). These do not appear in the list of operations of the data type (figure 6) because they are meant to be used only from within the module, not by outside users.

A new complication presents itself when implementing the operations. That is the problem of local variables. One must ensure that the extra variables defined for the user interface (see figure 6) serve as the first lines for the subroutines that implement each of the operations.
Listing 1: Program for testing the intset abstraction.

100 GOSUB 1000 'initialize INTSET storage
110 T = ← · F = 0 'initialize TRUE and FALSE
200 INPUT C$, P1, P2: IF C$ < 'a' THEN C$ = CHR$(ASC(C$) + 32)
250 IF C$ = 'c' THEN 260 ELSE 320
260 GOSUB 1100 'create()
270 IF NOT NS THEN GOSUB 1600 'display(s)
300 IF C$ = 'r' THEN 310 ELSE 350
310 S = Pi: GOSUB 1700 'kill(pl)
320 GOT0 200
350 IF C$ = 'B' THEN 360 ELSE 400
360 S = Pi: GOSUB 1400 'is-member(pl,p2)
370 IF NOT NS THEN IF B THEN PRINT 'True' ELSE PRINT 'False'
380 GOT0 200
400 IF C$ = 'y' THEN 410 ELSE 450
410 S = Pi: X = P2: GOSUB 1200 'insert(p1,p2)
420 IF NOT NS THEN GOSUB 1600 'display(s)
430 GOTO 200
450 IF C$ = 'K' THEN 460 ELSE 500
460 S = Pi: GOSUB 1900 'union(pl,p2)
470 IF NOT NS THEN PRINT 'Set'; S; 'deleted'
480 GOTO 200
500 IF C$ = 'm' THEN 510 ELSE 550
510 S = Pi: X = P2: GOSUB 1300 'remove(p1,p2)
520 IF NOT NS AND NOT NI THEN IF B THEN PRINT 'True' ELSE PRINT 'False'
530 GOTO 200
550 IF C$ = 'g' THEN 560 ELSE 600
560 STOP quit program
600 IF C$ = 'r' THEN 610 ELSE 650
610 S = Pi: X = P2: GOSUB 1800 'intersect(pl,p2)
620 IF NOT NS THEN GOSUB 1600 'display(s)
630 GOTO 200
650 IF C$ = 'v' THEN 660 ELSE 700
660 S1 = Pi: S2 = P2: GOSUB 1900 'union(pl,p2)
670 IF NOT NS THEN PRINT 'Set'; S1; 'deleted'
680 GOTO 200
700 IF C$ = 'X' THEN 710 ELSE 750
710 S1 = Pi: S2 = P2: GOSUB 1400 'is-member(pl,p2)
720 IF NOT NS AND NOT OS THEN GOSUB 1600 'display(s)
730 GOTO 200
750 PRINT 'Unrecognized command': GOTO 200

Listing 2: Matrix implementation of intset abstraction.

1000 'Abstract data type: INTSET
1005
1010 'Representation:
1015 'Each row of matrix S(10,10) stores a set. There is thus
1020 'a maximum of 11 sets (numbered 0 to 10). If the 0 element
1025 'of a row is ~ 1, then that set has not been created.
1030 'That leaves columns 1 to 10 for set elements. A cell with
1035 'value ~ 1 is empty; otherwise the cell contains an element
1040 'of the set.
1045 'Initialize the INTSET storage:
1050 DIM S(10,10)
1070 FOR I = 0 TO 10: FOR J = 0 TO 10: S(I,J) = ← 1: NEXT J,i
1080 RETURN
1095
1100 'create() returns(0) signals(os) local(i)
1110 'OS = F
DATA ABSTRACTION

1120 FOR I = 0 TO 10 FIND first unused set
1130 IF S(0) = -1 THEN S(I) = 0: S = I: GOTO 1150
1140 NEXT I: OS = T: PRINT "Out of sets"
1150 RETURN 1195
1195
1200 INSERT(s,x) returns(s) signals(ns,ni,nr) local(i,j)
1210 GOSUB 2000: IF NS THEN RETURN
1220 GOSUB 2100: IF NI THEN RETURN
1230 NR = F, J = 0: J holds first available cell
1240 FOR I = 10 TO 1 STEP -1
1250 IF S(I) = X THEN RETURN 'no duplicates in a set
1260 IF S(I) = -1 THEN J = i
1270 NEXT I
1280 IF J = 0 THEN NR = T: PRINT "No more room in set": S ELSE S(J) = X
1290 RETURN
1295
1300 remove(s,u) returns(s) signals(ns) local(i)
1310 GOSUB 2000: IF NS THEN RETURN
1320 GOSUB 2100: IF NI THEN RETURN
1330 FOR I = 1 TO 10
1340 IF S(I) = X THEN S(I) = -1
1350 NEXT I
1360 RETURN
1365
1375
1400 'empty(s) returns(b) signals(ns) local(i)
1410 GOSUB 2000: IF NS THEN RETURN
1420 B = T
1430 FOR I = 1 TO 10
1440 IF S(I) = -1 THEN B = F 'test for a used cell
1450 NEXT I
1460 RETURN
1465
1495
1500 'member(s,x) returns(b) signals(ns) local(i)
1510 GOSUB 2000: IF NS THEN RETURN
1520 GOSUB 2100: IF NI THEN RETURN
1530 B = F
1540 FOR I = 1 TO 10
1550 IF S(I) = X THEN B = T
1560 NEXT I
1570 RETURN
1575
1580 display(s) signals(ns) local(i)
1600 GOSUB 2000: IF NS THEN RETURN
1610 PRINT "Set" S: ;
1620 FOR I = 1 TO 10: IF S(I) = -1 THEN PRINT S(I);
1640 NEXT I: PRINT ";";
1650 RETURN
1655
1665
1700 kill(s) signals(ns) local(i)
1710 GOSUB 2000: IF NS THEN RETURN
1720 FOR I = 0 TO 10
1730 S(I) = -1 every cell becomes unused
1740 NEXT I
1750 RETURN
1755
1790
1800 intersect(s1.s2) returns(s) signals(ns,nc) local(i,j,k)
1810 S = S1: GOSUB 2000: IF NS THEN RETURN
1815 S = S2: GOSUB 2000: IF NS THEN RETURN
1820 GOSUB 1100: S3 = S: IF OS THEN RETURN 'create new set for result
1830 FOR K = 1 TO 10
1840 IF S(K) = -1 THEN S30 'for each member of first set
1850 X = S(S1.K): S = S2: GOSUB 1500 'if it is a member of second set,
1855 IF X THEN S = S3: GOSUB 1200 'then insert into result
1860 NEXT K

(continued)
1970 $ = S3: RETURN
1985
1990 union(s1,s2) returns(s) signals(ns,co,n) local (i,j,k)
1910 $ = S1: GOSUB 2000: IF NS THEN RETURN
1915 S = S2: GOSUB 2000: IF NS THEN RETURN
1920 GOSUB 1100: S3 = S: IF OS THEN RETURN create new set for result
1930 FOR I = 1 TO 10
1935 S(S3,I) = S(S1,I) 'copy first set into result
1940 NEXT I
1950 FOR K = 1 TO 10
1960 IF S(S2,K) = -1 THEN 1980 'for each member of second set,
1970 S = S3: X = S(S2,K): GOSUB 1200 'insert it into result
1975 IF NR THEN 1990
1980 NEXT K
1990 RETURN
1995
2000 'is-valid-set(s) return(ns)
2010 IF S < 0 OR S > 10 THEN NS = T: PRINT S; "not a valid set number": RETURN
2020 IF S(S) = -1 THEN NS = T: PRINT "Set s": "not created yet": RETURN
2030 NS = F: RETURN
2095
2100 'is-not-integer(x) returns(n)
2110 IF X < 0 OR x > INT(X) THEN NI = T:PRINT X; "not a valid integer": RETURN
2120 NI = F:RETURN

ables used (that is, those not part of the concrete representation or the user interface) do not conflict with those used elsewhere, whether in another abstraction, the calling procedure, or in other operations of the same data type. For this reason it is advisable to add one more item of information to the header for each operation, namely, a list of the additional local variables that it uses. Note that this is done in listing 2.

The local variables are ones that the operations use temporarily. Whatever value they may have had previously is destroyed. When a subroutine returns, their value is undefined and they are free to be used again. Keeping track of local variables becomes tricky (and imperative) when one operation calls another. The implementation of intersect (line 1800 and following) is a case in point. One

(continued)
Data abstraction allows you to modify a program simply by changing a module’s implementation.

would be tempted to use I as the local indexing variable as is done in all other operations. However, intersect calls insert (line 1200 and following), which already uses I and J as local variables; we see this by looking at the local statement in the header of the intersect. This alerts us to the fact that if we use I in intersect we are in for trouble: every call to insert would destroy its value. Thus, we use a new variable. K. Note also that the local variables for intersect are given as I, J, and K, even though I and J do not appear in the code for the intersect operation. This is because a procedure always inherits the local variables of any procedure it calls.

MAINTENANCE AND PORTABILITY

From the perspective of the program code that is outside an abstract data type, we have already seen that an advantage of programming with data abstractions is that you can write programs that use them without knowing how they are implemented on the inside. Now we take the perspective of the program code inside the abstract data type and see that an advantage of programming with data abstractions is that you can modify the implementation without affecting the outside programs that use it. This is a boon for maintaining a program and porting it to other systems. For instance, suppose we decided that limiting our sets to a maximum of 10 elements (as does the implementation of listing 2) is too restricting. We decide we want to modify our program to allow for sets of up to 20 elements. Because the information about how the internal abstraction is represented is hidden inside the abstract set module, any programs that use the abstraction (in this case the test program of listing 1) are not affected.

The only changes to make include redefining the dimension matrix to allow the program loops for the operations. We soon discover that this latter change gets rather tedious and that we would have been better off in the first place to make the maximum size of a set a variable in the abstract representation of intersect, and then to use that variable in the FOR loops for all the subroutines. Then changing the maximum size of sets would mean changing (continued)

MICRO CONTROLLED DIGITAL DATA RECORDER

FEATURES:

- Microprocessor controlled data buffering
- Buffers data in RAM; data comes in at any standard baud rate, plays back at any baud rate (switchable)
- Tape runs only during block record/playback
- RS232 input/output: 110/220 v ac or 12 v dc + 1.2 MB per tape side
- Uses chrome oxide audio cassettes
- Has hold-off during playback via CTS line
- No data hold-off during record.

APPLICATIONS:

- PROCESS CONTROL
- POINT OF SALE
- TELEPHONE SWITCH LOGGING (SMDR)
- INSTRUMENTATION
- DIAGNOSTIC SUPPORT
- PROGRAM LOADING
- DATA LOGGING.

BUFFERED VERSION MODEL PDI-1B

- **$595.00**

NON BUFFERED VERSION - MODEL PD-1

- **$335.00**

TO ORDER, DIAL:

- (201) 356-9200

HARMONY VIDEO & COMPUTERS

2357 CONEY ISLAND AVE., BROOKLYN, NY 11223

TO ORDER CALL TOLL FREE

800-VIDE094 OR 212-627-1050 OR 800-441-1144

WOW!

IBM PC

$1399.95

OKIDATA 92

$369.95

PRINTERS

- Okidata 92
- Okidata 93
- Epson RFX
- Epson RXBO
- Epson FXBO
- Delta 10
- Delta 15

IBM

PC 64K 1396

PC XT 1396

Printer Card 88

Tandem Drive 169

Monitor Card 139

IBM Monitor (GRN) 424

 Hercules Graphic 74

Sclwem 74

Simon Capstan 64K 269

AST Sin Pack 236

Talksyst 10 Meg 2950

MONITORS

- Apple 25 w/Desk 799
- Macintosh 1749
- Apple 2C 929
- Imager 499
- Printer Card 75
- CPM 2 Card 100
- RLL Card 124
- All Drive From $90 & Up
- System Saver Fan 66
- Koala Pad 74

COMMODORE

- Amstr 300 Green 114
- Commodore 84 184
- Commodore 85 155

MOODES

- Hayes 1200 424
- Hayes 1200 364
- Hayes 1200 169
- Micromodem 2E 198

SANYO

- Navision Scat 86

STB Systems

IBM PC XT and

PEGASUS

236 Lackland Drive

Middlesex, N.J. 08846
DATA ABSTRACTION

Listing 3: Linked list implementation of set abstraction.

1000 Abstract data type: INTSET
1005
1010 Representation:
1015 ST(10) is the "Set Table"
1020 ST(i) specifies the address in S of the first element of set i
1025 ST(i) = 1 means set i not yet created
1030 ST(100,1) stores the set elements
1035 Column 0 stores a set element
1040 Column 1 is link which specifies address in S of next element
1045 Column 0 value of -1 marks end of list (and of set)
1050 'A' points to next available cell of S
1055 Initially all cells of S are linked together on available list
1060 Initialize the INTSET storage:
1065 DIM ST(10); FOR I = 0 TO 10: ST(i) = -1: NEXT I
1070 DIM S(100,1); FOR I = 0 TO 99: S(I) = 1: NEXT I
1075 S(100,0) = -1: A = 0 "put entire list of cells on available list"
1080 RETURN
1085
1100 CREATE() returns(s) signals (os) local(i,n)
1110 OS = F
1120 FOR I = 0 TO 10
1130 IF ST(I) = -1 THEN 1150 find first unused set
1140 NEXT I
1150 GO SUB 2200: IF NF THEN OS = T RETURN 'no more room'
1160 ST(O) = N: S(N) = -1: S = I RETURN 'initialize set'
1195
1200 INSERT(x) returns signals(ns,ni,ln) local(i,n)
1210 GO SUB 2000: IF NS THEN RETURN
1220 GO SUB 2100: IF NI THEN RETURN
1230 GO SUB 1500: IF B THEN RETURN 'no duplicates'
1240 GO SUB 2200: IF NF THEN RETURN
1250 S(N) = ST(S): ST(S) = N(S(N)) = X INSERT the element
1260 RETURN
1285
1300 REMOVE(x) returns signals(ns,ni,ln) local(i,n)
1310 GO SUB 2000: IF NS THEN RETURN
1320 GO SUB 2100: IF NI THEN RETURN
1330 I = ST(S): J = 0 J will point to cell preceding one to remove
1340 IF S(J) = -1 THEN RETURN
1350 IF S(J) = X THEN J = I: GOTO 1340 "find element to remove"
1360 IF J = 0 THEN ST(S) = S(1) ELSE S(J) = S(J) remove it
1370 S(J) = A = 1 return removed cell to available list
1380 RETURN
1395
1400 IS-EMPTY() returns(b) signals(ns)

(continued)
to the interface of figure 6 and therefore is equivalent to the matrix implementation in its external effects. The test program works equally well whether one combines it with the join module of listing 2 or the module of listing 3.

Since nearly any two implementations of BASIC differ in some details, BASIC programs turn out to be of limited portability in actual practice. Writing software in terms of data abstractions is an excellent way to enhance a program's ultimate portability. Information hiding localizes the details of implementation that are likely to be changed, such as variable names, matrix dimensions, and input/output protocols.

Passing parameters with assignment statements and calling GOSUB in most lines of a program can get tedious. It may often seem justifiable on the grounds of efficiency to access a data structure directly without going through the operations. You should avoid such temptations at all costs: you may pay the price when it comes time to debug, enhance, or port the program.

REFERENCES

ACKNOWLEDGMENTS
The author is indebted to two of his colleagues of the Summer Institute of Linguistics to Graeme Costin for many helpful comments on an earlier draft of the article, and to Dr. Joseph E. Grimes (also of Cornell University) for some insights on programming with data abstractions in BASIC.