
STRACTION 
A BASIC 
IMPLEMENTATION 
FOR PROBLEM 
SOLVING 

Editot's note: For more information and back- 
ground reading on data abstraction, see the 
article by Niklaus Wirth in the August issue, 
"History and Goals of Modula-2 ." 

PROGRAMMERS, AND INDEED 
problem solvers in general, have two 
basic strategies for attacking new 
problems: decomposition and ab- 
straction. These strategies offer two 
different ways of solving a complex 
problem by simplifying it in some way 
Decomposition is the strategy em- 
bodied by the time-honored Machia- 
vellian dictum to "divide and con- 
quer'Lsolving large problems by di- 
viding them into simpler, smaller ones 
that can be solved independently. 
Abstraction is the strategy of ignoring 
certain details about the original 
problem so as to transform it into a 
simpler and more general one. 

For example, consider the problem 
of computing the sum of the squares 
of two numbers, 3 and 4 (that is, com- 
pute 32 + 42). We first simplify the 
problem by decomposing it into a se- 
quence of three simpler problems: ( I )  
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Gary E ~ i m o i  (7 500 w:Camp Wisdom 
Rd.. Dallas, TX 7 52361 is an International 
Consultant. for ~inguistics and Academic 
Computing with the Summer Institute of 
Linguistics. 

compute the square of 3, (2) compute 
the square of 4, and (3) add the two 
results together. We assume that the 
final step of addition is sufficiently 
fundamental that we need not con- 
sider it further. However, the first two 
subproblems can be restated in more 
simple terms. "Compute the square of 
3" means the same as "multiply 3 by 
3," and "compute the square of 4" 
means the same as "multiply 4 by 4:' 

We may now apply the principle of 
abstraction to simplify the problem 
further. We see that there is some- 
thing essentially the same about com- 
puting the square of 3 and computing 
the square of 4. By abstracting away 
the particular details of the 3 versus 
the 4, both subproblems can be 
solved by a single more general solu- 
tion. namely, that of computing the 
square of n, where n can represent 
any number. 

~NFORMAT~ON HIDING AND 
ABSTRACT DATA TYPES 
The essential design methodology for 
data abstraction is known as informa- 
tion hiding. The approach was first pro- 
posed by D. L. Pamas in 1972 (see ref- 
erence 4). He proposed that the 
behavior of software modules be 
specified completely in terms of their 
external effects. Such a module hides 
a secret. namely, the representation 
of the data object that the module 
manages. 'b the outside user, the 
module provides a set of access func- 
tions that are used to create, alter, or 
observe instances of the abstract data 
object. There is no way for anyone or 
anything but the implementation of 
the module itself to access the ob- 

jects, other than through those access 
functions. 

The type of module that Pamas first 
described has come to be known as 
an abstract data type. It is abstract 
because the details of the concrete 
representation of the data type are 
unknown to the user. It has also been 
called an encapsulated data type, since 
the details of implementation are 
locked away from the user inside a 
capsule. The functions that access an 
abstract data type are now common- 
ly referred to as its operations. 

An abstract data type, therefore, 
presents itself to the user not as a 
data structure, but as a collection of 
procedural abstractions. These are the 
operations that allow one to create, 
observe, or alter objects of the 
abstract type. The task of implement- 
ing an abstract data type then consists 
of determining a concrete represen- 
tation for objects of the type and 
writing the procedural abstractions 
that operate on objects thus repre- 
sented. 

WE INFORMAL SPECIFICATION 
OF ABSTRACT DATA TYPES 
'Avo methods for specifying the 
behavior of abstract data types have 
emerged. The first is an informal ap- 
proach that uses prose statements to 
describe the effect of each of the 
operations of the data type. The sec- 
ond is a formal approach that uses 
algebraic statements that are precise 
and unambiguous. Both approaches 
are described in tum. 

Barbara Liskov gives a complete ex- 
ample of the informal method in her 
paper "Modular Program Construc- 
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tion Using Abstraction." (See refer- 
ence 3.) In Liskov's informal approach, . . . . . . . . 

the specification of a data abstraction divide ---. (xly:real) :. .. ,-, re ., tturns real signals divide-by-zero 
erren. II y- u trlen signals divide-by-zero 

I else returns dy  

tions; a brief description of the'data sort (x:array[intl) 
abstraction as a whole: and a specifi- modlfles x - 
cation for each of the operations. effect sorts the elements of x in ascending order 

Each of the is a procedural search (x:array[int]. y:int) r k u m  i n  6IgnaIS no-match abstraction. The specification of a requlree x is sorted in ascending order 
procedural abstraction may have four effect returns i such that x [i] = y; 

has three parts: a header that names 
the data abstraction and its opera- 

parts: a header; a modifies line; a 
requires line; and an effect line. The 

-. 

ditions it signals. The modifies line 

tion of a data abstraction. Figure 2 

WE FORMAL SPECIFICATION 

data abstractions defines an abstract 
(continued on page 414) 

1 signals no-match if no s u d  i is found I 
header defines how the procedure in- 1 
terfaces with the outside world, that Figure 1: Sample cnorifirntinvtc nf nrnroAurnl nhctrnrtinvtc ~ n f t o r  I icbnl~) 

is, its name, the order and tvpes of its 
1 inputs and outputs, and the error con- 

/ defines which of the inputs may be 
modified by the procedure. The re- 
quires line defines any assumptions 
that are made about the calling en- 
vironment. The effect line describes 
what the operation is intended to do. 
Figure 1 gives some sample specifica- 
tions for procedural abstractions 
based on Liskov's approach. 

We mav now illustrate the s~ecifica- 

gives a sample specification of; data 
type called intset (set of positive inte- 
gers]. Note the three parts of the 
specification:,the header that names 
the data type and lists its operations; 
a brief description of the data type as 
a whole: and the specifications for 
each of the operations. 

The formal approach to specifying 

intset Is create, insert, remove, isempty, ismember 

lntsets are sets of poaltive integare; the maximum sire of an ifitset is 216 - I 
members, lntsets are either created empty (using cfeate) or made from dher in(eet8 
with a new member added (using insert) or removed (using remove). lsmpty tests 
whether an ints6t has any members; ismember tests whether a given integer is a 
member of an intset. 

create ( ) returns intset 
effect returns an empty intset 

insert (s:in$et, x:int) returns intset rlgnals no-room 
effect if the slze of s union {x) is less than or 

equal to the maximum size, 
then returns s unlon {x} , 
else signals no-room 

remove ( s : i M ,  x:int) roturns intset 
effect returns s minus x 

isempty (s:intset) return6 Boolean 
&ct returns true If s has no members 

ismember (s:intset, x:lnt) Wurnr Boolean 
effect returns true if x is a member of s 

Figure 2: Sample specifications of data abstraction (after Liskov). 
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(continued from page 131 ) 

type in terms of an algebra. In the 
general theory of algebras, an algebra 
is a pair < A:F > , where A is a non­
empty set and F is a family of opera­
tions on A. For instance, the familiar 
algebra of grade school mathematics 
is defined by the set of real numbers 
and the operations of addition, sub­
traction, and so on. Since an abstract 
data type consists of a set of objects 
that carry the type and the operations 
on those objects, it is easy to see how 
abstract data types lend themselves 
to definition in terms of an algebra. 

The meaning (or the effect) of the 
operations is defined as a set of for­
mal axioms that state the relation­
ships among the operations The 
reduction of the operations' meanings 
to a set of axioms makes it possible 

intset . 
intset 
intset 

DATA ABSTRACTION 

to reason formally about the correct­
ness of a design before it is imple­
mented. This is one of the productive 
ways of using this approach in pro­
gram design 

The algebraic approach to specify­
ing abstract data types is rigorously 
defined by John Guttag and J. J. Horn­
ing (see reference I) and consists of 
two parts: a syntactic specification 
and a semantic specification. The syn­
tactic specificat ion defines how the 
type interfaces with the outside world; 
it defines the name of the type, the 
names of all its operations, and the 
types of the domains (inputs) and 
ranges (outputs) of the operations. 
Figure 3 illustrates the syntactic speCi­
fication for the abstract type intset. 

The operations on any data type fall 
into two classes: generator operations 

and inquiry operations. The genera­
tors are those operations that pro­
duce an object of the type of interest 
(for example, intset). The inquiry oper­
ations focus on objects of interest but 
produce a result that is of a different 
type (for example, Boolean). The 
blank line in the example of figure 3 
separates the two classes of opera­
tors. Within the set of generators 
there is a subset called basic genera­
tors that are sufficient to generate any 
object of the type of interest. The 
basic generators, create and insert. 
are marked in figure 3 with a preced­
ing asterisk. 

Boolean 
Boolean 

The semantic specification of the 
operations consists of a set of ax ioms 
that define the meaning of the opera­
tions by stating their relationships to 
one another. The axioms are pre­
sented as equations in which the left­
hand side specifies an expression to 
be defined and the right-hand side 
gives its meaning. For the basiC gen­
erators, no definitions are written; 
they are assumed as given. Thus we 
first write axioms that define the 
meaning of the non basic generators 
(for example, remove): the right-hand 
sides of these equations must even­
tually be reduced to expressions in­
volving only basic generators. Then Figure 3: Syntactic specification for abstract type intset. 

(continued) 
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DATA ABSTRACTION 

same axioms to this simplified expres- 
sion to reduce it ultimately to T or F. 
The recursive application of the ax- 
ioms is easily illustrated. For instance. 
imagine an intset of three members: 
{ 1.2.3). In the language of our ax- 
ioms, this set would be represented 
bv the exmession: 

axioms repeatedly until it can be re- 
duced no further. Figure 5a illustrates 
this process: we see that the expres- 
sion ultimately reduces to F, or false. 
Similarly, we can test if 2 is a member 
of the set. This is done in figure 5b 
where we see that the result is T, or 
true. 

i nsert(1 ,insert(2,insert(3,create))) These illustrations demonstrate the 
potential of the method for giving us 

We now want to test if 4 is a member a rigorous way to reason about the 
of the set. This test is equivalent to meaning and ultimately the correct- 
the expression: ness of program designs. The se- 

quences of derivations in figure 5 are ismember(4,insen(l .insert(2,insert(3. actually proofs that .Ismem ber(4, create)))) {1,2,3))" means false and that 
To discover what this expression ~smember(2,{1,2,3))" means true. In 
means, we simplify it by applying the (continued) 

Axioms: 
For all i, i' of type Int, and all s of type Intset: 

remove(i,create) = create 
remove(i,insert(i:s)) = ~f equal (i,i) then s else insert(i:rernove(i,s)) 

isempty(create) = T 
~sempty(insert(i,s)) = F 

ismember(i,create) = F 
ismember(i.insert(i3)) 5 if equal(i,iJ then T else ismember(i,s) 

Figure 4: Semantic specification for abstract type intset. 

1 (a) Is 4 a member of the set {1.2,3)1 I 

F 

(b) is 2 a member of the set {1,2 

I I 

Figure 5: Reducing expressions by axiomatic su6stitution. 
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programmer must know what 
bles are used in the implemen- 

ion of the data type, in order to 
abusing the type by inadvert- 

using one of these variables for 
erent purpose elsewhere. 

n a pure information-hiding en- 
ronment this would not be the case. 

n a data abstraction truly hides 
oncrete representation of a type, 
the way one type is represented 
ot interfere with how another is. 
n BASIC this does not come auto- 
cally since all variables have a 
al scope and the representation 
ne type can therefore interfere 

if the variables are not 
ASIC programmer must 
content with a weaker 
abstraction that hides 

e meaning and use of the data 
tures that implement an abstract 
but cannot hide their names. 
er an abstract data type has been 

specified, as discussed in the preced- 
ing sections, there are three steps in 
its implementation: (1) define the user 
interface, (2) define the concrete rep- 
resentation, and (3) implement the 
operations. Each of'these steps will be 
considered in turn. 

DEFINING THE USER 
INTERFACE 
The user interface refers to what a 
person must know in order to invoke 
the operations of the data type. For 
each operation, the following items 
must be defined: the line number 
where the subroutine begins, the 
variables in which input parameters 
are passed to the operation, the 
variables in which values are returned, 
and the variables in which exception 
codes are signaled. All of this infor- 
mation can be conveyed in a one-line 
REM (remark) statement that serves 
as a header for the subroutine. (The 

version of BASIC used in the listing 
below allows ' as shorthand for REM.) 

Figure 6 illustrates a possible defini- 
tion of the user interface for the 
abstract type intset. Note, for instance. 
the header for the operation "insert." 
The address of the subroutine is iden- 
tified as line 1200. The input para- 
meters (a set identifier and an integer 
to insert into the set) are passed in the 
variables S and X respectively. The 
operation returns s as the set identifier 
of the resulting set. The operation 
may signal one of three exception 
codes; this is done with three vari- 
ables that return a Boolean value. If 
one of these variables has a value of - 
true when the subroutine returns, 
then that condition has occurred. 
Thus the insert operation may signal 
"not a valid set" in NS,  "not a valid 
integer" in NI. or "no more room" in 
NR. 

(continued) 
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DATA ABSTRACTION 

1000 'abstract data type: INTSET 
1100 %reate() returns(s) signals(os) 
1200 'insert(s,x) returns(s) stgnals(ns,ni,nr) 
1300 'remove(s, x) returns(s) signals(ns, ni) 
1400 'isempty(s) returns(b) signals (ns) 
1500 'ismember(s,x) returns(b) signals(ns,ni) 
1600 'display(s) signals(ns) 
1700 'kill(s) signals(ns) 
1800 'intersect(sl,s2) returns(s) signals(ns,os) 
1900 'union(sl,s2) returns(s) signals (ns,os,nr) 

Key to exception codes: 
I 

ni = not a valid integer 
nr = no more room 
ns ~i not a valid set 
0s = out of set8 

Note also that figure 6 defines four Intersect produces a new set that is vironment for testing our implemen- 
new operations on type intset: the intersection of two existing sets. tations of the intset abstraction. 
display, kill, intersect, and union. Dis- Union produces a new set that is the 
play prints the contents of a set on the combination of two existing sets. USING THE ABSTRACT DATA 
screen. Kill deletes an existing set. These operations provide a fuller en- WPE 

With the design of the user interface 
in hand, we know enough to write a 
program that uses the type. Figure 7 
gives the overall design for a program 
to test an implementation of intset. (It 
overlooks the details of what to do 
when an exception is signaled.) The 
test program repeatedly takes a one- 
letter command and two numerical 
arguments, executes the named oper- 
ation, and displays the resulting set. 

See listing 1 for the test program. 
As an example of how to use an oper- 
ation, consider the use of insert in 
lines 410 and 420. The operation is in- 
voked by GOSUB 1200, but before 
calling the subroutine we must pass 

Figure 6:  User interface for abstract data type intset. the parameters. The interface requires 
(continued) 



that the set identifier be passed in S 
and the integer to insert in X, thus the 
codeS = Pl X = P2. In line 420, the 
statement GOSUB 1600 calls display. 
This too requires a set identifier in S 
but since insert returns with the cur­
rent set in S, there is no need for an 

DATA ABSTRACTION 

assignment statement to pass the pa­
rameter. As long as S was not an in­
valid set identifier, that is, as long as 
NS = False. we display the resulting 
contents of set S. It is assumed that 
all exception conditions will generate 
an error message when they are dis-

----- - - - - --------------

PROCEDURE [es: Inlset abstraction: 
Initialize abstract data type Intset 
REPEAT until commanded to quit 

Get a command and two parameters (p1 and p?) 
CASE of command 

c d!splay(create()) 
d. dlsplay(p1) 
e Isempty(p1) 
i display(insert(p1p2)) 

k kill(p1) 
m: ismember(p1,o2) 
q: qUit program 
r: dlsplay(remove(p1,p2)) 
u dlsplay(unlon(p1, p2)) 
x dispiay(intersect(p1. p2)) 

Figure 7: Design for program to tcst an implementation of intset 
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covered by intset If NI or NR occurs, 
a message will be given but we still 
want to display the current status of 
S, The use of the other operations 
follows the same principles 

It is important to note that we were 
able to write a program using Intset 
before we decided how the type is to 
be represent(;d or implemented. This 
is the power of information hiding and 
data abstraction at work. As long as 
we stick to the interface definition in 
figure 6 when we implement the data 
type, the test program will work 

There is, however, one slight com­
plication brought on by the global 
scoping of all variables in BASIC Our 
test program is guaranteed to work 
only if we avoid variable conflicts The 
test program happens to use three 
variables of its own that are not part 
of the i ntset interface, These are C$, 
P1, and P2. The test program is 

(continued) 

Se Habla Espanol 

PRINTERS 
EPSON, OKIDATA 
full line 

"FC 2050 
J550 

Cltoh F~W 
.luki fi 100 
Qllme 11/40 

cps, grapll:c 

***I.cttn Quality*** 

2() cr~ for IB~\'l PC. 
35 cp~ fu) IBi\·l P(' 
4(l cps. 
1 ~ 

Star POWPf Type 18 cps 
Diablo 630 ECS/IBi\1 ext. char. set 
Dynax Hl{3S 33 
Comrl'X Comwriter III. 
Tmnstar 315 grapnic, ,--,olar. 

MONITORS 
(TER\lIN·\LS: IlAZELTl'lE, ?E"ITH. WYSE. VlseAl 
Panasonic amber ,~\lpcr 
Comrr< CR6800 14"RGIl 
:\"EC JC1216 RGB monitor, 640x300 resolution. 

1812(11 20 \1hz monitor 
Princeton Graphic RGB monitor .. 

SR12 RCIl 

Call 
1,100 
.799 
.379 

.CALL 
545 

.840 
1.6111 
.99'1 
.459 

1,420 
.399 
2,100 

910 
740 

.479 

CALL) 
.199 
.489 
.435 
.185 
.490 
.630 

Amdck 300 12" .155 
Color .7111 

Zenith ZVM 123 87 Calcomp M84 

940 
1,640 
1,650 Packagc' Wilh 10 vlB hard disk aho a,<,ilank ZVM 122 .135 

.----------------------1 ************* CAl J. FOR DETAIl.S ****hh*",*,.* h~~Z~V~M~13~53R~G~B~rn~o~ni~toIr~fO~r~I~IlM~P~C~. ~~~'Z4~751 

POWERFUL ADD-ON BOARDS 

from AST. T'FRSYST. PI ANTRCJNIt'. TLC\lAR. 
QLiADRA\!, HERCULES. Tn AI'; 

MORE FOR YOUR IBM PC 

426 II Y T t: • OCTOBER I ~84 

MODEMS 
HAYES SmartIllodem JOO/1200 

1200B modcm for IBM 
eSR 300/1200 bps parallel pon.S50 

Password 300/1200 modem 339 
NOVATION 415 

.450 

~~:~h~%~~~n;v~ 
Farmingdale, NY 11735 
For information CALL (516) 420-0142 
To order CALL 1-800-331-3343 

TELEX: 
429418 
CSTNY 

Circle 64 on inquiry card 



DATA ABSTRACTION 

guaranteed, therefore, only if the im- 
plementation of intset stays away from 
these three variable names. Converse- 
ly, if we begin with an already imple- 
mented data type and want to write 
a program that uses it, that program 
may not use any variable as a free 
variable that is used in the implemen- 
tation of the data type. 

DEFINING THE CONCRETE 
REPRESENTATION 
The second step in implementing an 
abstract data type is to define the 
concrete representation. A straightfor- 
ward representation for integer sets 
is to store them in a matrix where 
each row represents a set and the col- 
umns hold individual set elements. A 
value of - 1 means that the matrix cell 
is empty: a positive integer is a set 
element. A value of - 1 in column 0 
means that the whole row is unused. 

Note that in figure 6, the first oper- 

ation is not coded until line 1100. The 
lines between 1000 and 1 100 are re- 
served for comments that describe 
the concrete representation, followed 
by an initialization subroutine that 
sets up the storage space for the data 
type as required by the method of 
representation. This subroutine is the 
first thing called by the test program 
of listing 1. 

Listing 2 gives a full implementation 
of intset with an underlying matrix 
representation of 11 sets (in rows 0 to 
10) with 10 elements each (in columns 
1 to 10). Note lines 1000 to 4040, 
which are comments describing the 
method of representation, and lines 
1050 to 1080, which define an ini- 
tialization routine that sets up the 
storage space for intsets. 

~MPLEMENTING THE OPERATIONS 
Now we are ready for the third step. 
implementing the operations. The 

headers defined for the user interface 
(see figure 6) serve as the first lines 
for the subroutines that implement 
each of the operations. Given the rep- 
resentation of the data type and the 
variables specified in the header for 
parameter, result, and exception code 
passing, the implementation of the 
operations falls into place. See listing 
2 for the complete implementation of 
the operations. Note that the imple- 
mentation makes use of two private 
subroutines [at lines 2000 and 21001 
for checking the validity of param- 
eters s and x. These do not appear 
in the list of operations of the data 
type (figure 6) because they are 
meant to be used only from within the 
module, not by outside users. 

A new complication presents itself 
when implementing the operations. 
That is the problem of local variables. 
One must ensure that the extra vari- 

(continued) 



Listing 1 :  Program for testing the intset abstraction. 
100 GOSUB 1000 'initialize INTSET storage 
110 T=- 1: F=O 'initialize TRUE and FALSE 
200 INPUT C$,Pl,P2: IF C$< "a" THEN C$ = CHR$(ASC(C$) + 32) 
250 IF C$ = '%' THEN 260 ELSE 300 
260 GOSUB 1100 %reate() 
270 IF NOT OS THEN GOSUB 1600 'display(s) 
280 GOT0 200 
300 IF C$ = "dd" THEN 310 ELSE 350 
310 S= PI: GOSUB 1600 'display(p1) 
320 GOT0 200 
350 IF C$='B" THEN 360 ELSE 400 
360 S= PI: GOSUB 1400 'is-empty(p1) 
370 IF NOT NS THEN IF B THEN PRINT 'True" ELSE PRINT "False" 
380 GOT0 200 
400 IF C$ = "I" THEN 410 ELSE 450 
410 S= PI: X= P2: GOSUB 1200 'insert(pl,p2) 
420 IF NOT NS THEN GOSUB 1600 'display(s) 
430 GOTO 200 
450 IF C$ = " k  THEN 460 ELSE 500 
460 S= PI: GOSUB 1700 'klll(p1) 
470 IF NOT NS THEN PRINT "Set";S;"deleted" 
480 GOT0 200 
500 IF C$ = "mu THEN 510 ELSE 550 
510 S = PI: X= P2: GOSUB 1500 'is-member(pl,p2) 
520 IF NOT NS AND NOT NI THEN IF B THEN PRINT'True" ELSE PRINTUFalse" 
530 GOT0 200 
550 IF C$ = $" THEN 560 ELSE 600 
560 STOP Quit program 
600 IF C$ = "r" THEN 610 ELSE 650 
610 S- PI: X= P2: GOSUB 1300 'remove(pl,p2) 
620 IF NOT NS THEN GOSUB 1600 'display(s) 
630 GOT0 200 
650 IF C$= "u" THEN 660 ELSE 700 
660 S1 = PI: S2 = P2: GOSUB 1900 'union(p1 ,p2) 
670 IF NOT NS AND NOT OS THEN GOSUB 1600 'display(s) 
680 GOT0 200 
700 IF k$ = "xu THEN 710 ELSE 750 
710 S1 - PI: S2 = P2: GOSUB 1800 'intersect(pl,p2) 
720 IF NOT NS AND NOT OS THEN GOSUB 1600 'display(s) 
730 GOT0 200 
750 PRINT "Unrecognized command": GOT0 200 
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1410 GOSUB 2000: IF NS THEN RETURN 
1420 IF S(ST(S),O)=- 1 THEN B=T ELSE B = F  
1430 RETURN 
1495 ' 
1500 'is-member(s,x) returns(b) signals(ns,ni) local(i) 
1510 GOSUB 2000: IF NS THEN RETURN 
1520 GOSUB 2100: IF NI THEN RETURN 
1530 I = ST(S) 
1540 IF S(I,O) = - 1 THEN B - F: RETURN 'end of set, not found 
1550 IF S(I,O)< >X THEN I =S(I,l): GOT0 1540 'not yet, keep looking 
1560 B=T RETURN 'it is found 
1595 ' 
1600 %lisplay(s) signals(ns) local(i) 
1610 GOSUB 2000: IF NS THEN RETURN 
1620 PRINT 'Set";S;" = {"; 
1630 1 = ST(S) 
1640 IF S(1,O) - 1 THEN 1660 
1650 PRlNT S(I,O);: I = S(1,l): GOT0 1640 
1660 PRlNT "1": RETURN 
1695 ' 
1700 'kill(s) signals(ns) local(i) 
1710 GOSUB 2000: IF NS THEN RETURN 
1720 1 = ST(S) 
1730 IF S(I,O)< > - 1 THEN I =S(I,l): GOT0 1730 'find end of set 
1740 S(I,O) = 0: S(I,l)= A: A = ST(S) 'return cells to available list 
1750 ST(S)=- 1: RETURN 'mark ST entry unused 
1795 ' 
1800 'intersect(sl,s2) returns(s) signals(ns,os) local(i,j,n) 
1810 S= S1: GOSUB 2000: IF NS THEN RETURN 
1815 S=S2: GOSUB 2000: IF NS THEN RETURN 
1820 GOSUB 1100: S3=S: IF OS THEN RETURN beate a new set for result 
1830 J = ST(S1) 
1840 IF S(J,O) = - 1 THEN 1870 
1850 X = S(J,O): S = S2: GOSUB 1500 'if a member of S1 is in S2, 
1855 IF B THEN S=S3: GOSUB 1200:IF NR THEN 1870 'then insert in result 
1860 J = S(J,l): GOT0 1840 
1870 S=S3: RETURN 
1895 ' 
1900 'union(sl,s2) returns(s) signals(ns,os,nr) local(i,j,n) 
1910 S=Sl: GOSUB 2000: IF NS THEN RETURN 
1915 S = S2: GOSUB 2000: IF NS THEN RETURN 
1920 GOSUB 1100: S3=S: IF OS THEN RETURN 'create a new set for result 
1930 J zST(S1) 'insert every element of S1 into result 
1940 IF S(J,O)=- 1 THEN 1960 
1945 X=S(J,O): S=S3: GOSUB 1200: IF NR THEN 1990 
1950 J = S(J,l): GOT0 1940 
1960 J = ST(S2) 'insert every element of S2 into result 
1970 IF S(J,O) = -1 THEN 1990 
1975 X=S(J,O): SzS3: GOSUB 1200: IF NR THEN 1990 
1980 J = S(J,l): GOT0 1970 
1990 S = S3: RETURN 
1995 ' 
2000 'is-not-set(s) returns(ns) 
2010 IF S<O OR S>10 THEN NS=T PRlNT S;"not a valid set number": RETURN 
2020 IF ST(S) =- 1 THEN NS= T PRlNT '3et";S;"not created yet": RETURN 
2030 NS= F: RETURN 
2095 ' 
2100 'is-not-integer(x) returns(ni) 
2110 IF X<O OR X< >INT(X) THEN NI =TPRINT X;"not a valid integerM:RETURN 
2120 NI = F: RETURN 
2195 ' 
2200 'get-next-cell() returns(n) signals(nr) 
2210 IF S(A,O)-- 1 THEN PRlNT "No more room": NR =T RETURN 
2220 N =A: A= S(A,l): NR = F: RETURN 

I 

t o  the interface of figure 6 and there- 
fore is equivalent to the matrix imple 
mentation in its external effects. The 
test program works equally well: 
whether o n e  combines it with the 
intset module of listing 2 o r  the 
module of listing 3.  

Since nearly any two implementa- 
tions of BASIC differ in some details, 
BASIC programs turn out t o  b e  of 
limited portability in actual practice. 
Writing software in terms of data 
abstractions is an  excellent way to 
enhance a program's ultimate porta- 
bility, Information hiding localizes the 
details of implementation that are 
likely to  b e  changed, such as  variable 
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