
STRACTION
A BASIC
IMPLEMENTATION
FOR PROBLEM
SOLVING

Editot's note: For more information and back-
ground reading on data abstraction, see the
article by Niklaus Wirth in the August issue,
"History and Goals of Modula-2 ."

PROGRAMMERS, AND INDEED
problem solvers in general, have two
basic strategies for attacking new
problems: decomposition and ab-
straction. These strategies offer two
different ways of solving a complex
problem by simplifying it in some way
Decomposition is the strategy em-
bodied by the time-honored Machia-
vellian dictum to "divide and con-
quer'Lsolving large problems by di-
viding them into simpler, smaller ones
that can be solved independently.
Abstraction is the strategy of ignoring
certain details about the original
problem so as to transform it into a
simpler and more general one.

For example, consider the problem
of computing the sum of the squares
of two numbers, 3 and 4 (that is, com-
pute 32 + 42). We first simplify the
problem by decomposing it into a se-
quence of three simpler problems: (I)

- - -

Gary E ~ i m o i (7 500 w:Camp Wisdom
Rd.. Dallas, TX 7 52361 is an International
Consultant. for ~inguistics and Academic
Computing with the Summer Institute of
Linguistics.

compute the square of 3, (2) compute
the square of 4, and (3) add the two
results together. We assume that the
final step of addition is sufficiently
fundamental that we need not con-
sider it further. However, the first two
subproblems can be restated in more
simple terms. "Compute the square of
3" means the same as "multiply 3 by
3," and "compute the square of 4"
means the same as "multiply 4 by 4:'

We may now apply the principle of
abstraction to simplify the problem
further. We see that there is some-
thing essentially the same about com-
puting the square of 3 and computing
the square of 4. By abstracting away
the particular details of the 3 versus
the 4, both subproblems can be
solved by a single more general solu-
tion. namely, that of computing the
square of n, where n can represent
any number.

~NFORMAT~ON HIDING AND
ABSTRACT DATA TYPES
The essential design methodology for
data abstraction is known as informa-
tion hiding. The approach was first pro-
posed by D. L. Pamas in 1972 (see ref-
erence 4). He proposed that the
behavior of software modules be
specified completely in terms of their
external effects. Such a module hides
a secret. namely, the representation
of the data object that the module
manages. 'b the outside user, the
module provides a set of access func-
tions that are used to create, alter, or
observe instances of the abstract data
object. There is no way for anyone or
anything but the implementation of
the module itself to access the ob-

jects, other than through those access
functions.

The type of module that Pamas first
described has come to be known as
an abstract data type. It is abstract
because the details of the concrete
representation of the data type are
unknown to the user. It has also been
called an encapsulated data type, since
the details of implementation are
locked away from the user inside a
capsule. The functions that access an
abstract data type are now common-
ly referred to as its operations.

An abstract data type, therefore,
presents itself to the user not as a
data structure, but as a collection of
procedural abstractions. These are the
operations that allow one to create,
observe, or alter objects of the
abstract type. The task of implement-
ing an abstract data type then consists
of determining a concrete represen-
tation for objects of the type and
writing the procedural abstractions
that operate on objects thus repre-
sented.

WE INFORMAL SPECIFICATION
OF ABSTRACT DATA TYPES
'Avo methods for specifying the
behavior of abstract data types have
emerged. The first is an informal ap-
proach that uses prose statements to
describe the effect of each of the
operations of the data type. The sec-
ond is a formal approach that uses
algebraic statements that are precise
and unambiguous. Both approaches
are described in tum.

Barbara Liskov gives a complete ex-
ample of the informal method in her
paper "Modular Program Construc-

tion U
ence 3
the spt
has thr
the da
tions; ;
abstrac
cation
Each o
abstrac
proced
parts:
require
header
terface
is, its n,
inputs i
ditions
define
modific
quires
that an
vironm
what tk
Figure,
tions
based

we rr
tion of
gives a
type a
gers).

, specific
. thedat

a brief
a who1
each a

T ~ E F
OF D1
The fo

' data al

tion Using Abstraction." (See refer-
ence 3.) In Liskov's informal approach,

the specification of a data abstraction divide ---. (xly:real) :. .. ,-, re ., tturns real signals divide-by-zero
erren. II y- u trlen signals divide-by-zero

I else returns dy

tions; a brief description of the'data sort (x:array[intl)
abstraction as a whole: and a specifi- modlfles x -
cation for each of the operations. effect sorts the elements of x in ascending order

Each of the is a procedural search (x:array[int]. y:int) r k u m i n 6IgnaIS no-match abstraction. The specification of a requlree x is sorted in ascending order
procedural abstraction may have four effect returns i such that x [i] = y;

has three parts: a header that names
the data abstraction and its opera-

parts: a header; a modifies line; a
requires line; and an effect line. The

-.

ditions it signals. The modifies line

tion of a data abstraction. Figure 2

WE FORMAL SPECIFICATION

data abstractions defines an abstract
(continued on page 414)

1 signals no-match if no s u d i is found I
header defines how the procedure in- 1
terfaces with the outside world, that Figure 1: Sample cnorifirntinvtc nf nrnroAurnl nhctrnrtinvtc ~ n f t o r I icbnl~)

is, its name, the order and tvpes of its
1 inputs and outputs, and the error con-

/ defines which of the inputs may be
modified by the procedure. The re-
quires line defines any assumptions
that are made about the calling en-
vironment. The effect line describes
what the operation is intended to do.
Figure 1 gives some sample specifica-
tions for procedural abstractions
based on Liskov's approach.

We mav now illustrate the s~ecifica-

gives a sample specification of; data
type called intset (set of positive inte-
gers]. Note the three parts of the
specification:,the header that names
the data type and lists its operations;
a brief description of the data type as
a whole: and the specifications for
each of the operations.

The formal approach to specifying

intset Is create, insert, remove, isempty, ismember

lntsets are sets of poaltive integare; the maximum sire of an ifitset is 216 - I
members, lntsets are either created empty (using cfeate) or made from dher in(eet8
with a new member added (using insert) or removed (using remove). lsmpty tests
whether an ints6t has any members; ismember tests whether a given integer is a
member of an intset.

create () returns intset
effect returns an empty intset

insert (s:in$et, x:int) returns intset rlgnals no-room
effect if the slze of s union {x) is less than or

equal to the maximum size,
then returns s unlon {x} ,
else signals no-room

remove (s : i M , x:int) roturns intset
effect returns s minus x

isempty (s:intset) return6 Boolean
&ct returns true If s has no members

ismember (s:intset, x:lnt) Wurnr Boolean
effect returns true if x is a member of s

Figure 2: Sample specifications of data abstraction (after Liskov).

OCTOBER 1984 B Y T E 131

(continued from page 131)

type in terms of an algebra. In the
general theory of algebras, an algebra
is a pair < A:F > , where A is a non­
empty set and F is a family of opera­
tions on A. For instance, the familiar
algebra of grade school mathematics
is defined by the set of real numbers
and the operations of addition, sub­
traction, and so on. Since an abstract
data type consists of a set of objects
that carry the type and the operations
on those objects, it is easy to see how
abstract data types lend themselves
to definition in terms of an algebra.

The meaning (or the effect) of the
operations is defined as a set of for­
mal axioms that state the relation­
ships among the operations The
reduction of the operations' meanings
to a set of axioms makes it possible

intset .
intset
intset

DATA ABSTRACTION

to reason formally about the correct­
ness of a design before it is imple­
mented. This is one of the productive
ways of using this approach in pro­
gram design

The algebraic approach to specify­
ing abstract data types is rigorously
defined by John Guttag and J. J. Horn­
ing (see reference I) and consists of
two parts: a syntactic specification
and a semantic specification. The syn­
tactic specificat ion defines how the
type interfaces with the outside world;
it defines the name of the type, the
names of all its operations, and the
types of the domains (inputs) and
ranges (outputs) of the operations.
Figure 3 illustrates the syntactic speCi­
fication for the abstract type intset.

The operations on any data type fall
into two classes: generator operations

and inquiry operations. The genera­
tors are those operations that pro­
duce an object of the type of interest
(for example, intset). The inquiry oper­
ations focus on objects of interest but
produce a result that is of a different
type (for example, Boolean). The
blank line in the example of figure 3
separates the two classes of opera­
tors. Within the set of generators
there is a subset called basic genera­
tors that are sufficient to generate any
object of the type of interest. The
basic generators, create and insert.
are marked in figure 3 with a preced­
ing asterisk.

Boolean
Boolean

The semantic specification of the
operations consists of a set of ax ioms
that define the meaning of the opera­
tions by stating their relationships to
one another. The axioms are pre­
sented as equations in which the left­
hand side specifies an expression to
be defined and the right-hand side
gives its meaning. For the basiC gen­
erators, no definitions are written;
they are assumed as given. Thus we
first write axioms that define the
meaning of the non basic generators
(for example, remove): the right-hand
sides of these equations must even­
tually be reduced to expressions in­
volving only basic generators. Then Figure 3: Syntactic specification for abstract type intset.

(continued)

Get Productive!
With these nevv hovv-to-do-it books

Apple to IBM PC Conversion Guide
by Richard Steck. The first book to show Apple users how to
convert Apple programs and peripherals to IBM PC use.
1 B047, $11.95

Database and File Management
Systems for the Microcomputer
by Nelson T Dinerstein. A timely, clear introduction to database
management from the best-selling author of dBASE /I for
the Programmer. 18088, S 15.95

4 14 B Y T E • OcrOBER 1984

Creating the Perfect Database
Using DB MASTER
by Trish McClelland. Outlines a tested process you can use to
create a database using D8 MASTER on your Apple or IBM Pc.
18039, $1795

The ABCs of Lotus 1-2-3
by Bill Kling. This step-by-step tutorial for beginners helps you put
1-2-3 to work immediately in your business 15996, $18.95

To order, contact your local bookstore or computer store,
or contact

Scott, Foresman and Company
Professional Publishing Group,
Dept. BY-2
1900 East Lake Avenue
Glenview, IL 60025
3 12/729-3000, x220B

For Canadian orders,
please contact
Gage Publishing Company
164 Commander Blvd.
Agincourt, Ontario MIS 3C7

Circle 325 on inquiry card.

DATA ABSTRACTION

same axioms to this simplified expres-
sion to reduce it ultimately to T or F.
The recursive application of the ax-
ioms is easily illustrated. For instance.
imagine an intset of three members:
{ 1.2.3). In the language of our ax-
ioms, this set would be represented
bv the exmession:

axioms repeatedly until it can be re-
duced no further. Figure 5a illustrates
this process: we see that the expres-
sion ultimately reduces to F, or false.
Similarly, we can test if 2 is a member
of the set. This is done in figure 5b
where we see that the result is T, or
true.

i nsert(1 ,insert(2,insert(3,create))) These illustrations demonstrate the
potential of the method for giving us

We now want to test if 4 is a member a rigorous way to reason about the
of the set. This test is equivalent to meaning and ultimately the correct-
the expression: ness of program designs. The se-

quences of derivations in figure 5 are ismember(4,insen(l .insert(2,insert(3. actually proofs that .Ismem ber(4, create)))) {1,2,3))" means false and that
To discover what this expression ~smember(2,{1,2,3))" means true. In
means, we simplify it by applying the (continued)

Axioms:
For all i, i' of type Int, and all s of type Intset:

remove(i,create) = create
remove(i,insert(i:s)) = ~f equal (i,i) then s else insert(i:rernove(i,s))

isempty(create) = T
~sempty(insert(i,s)) = F

ismember(i,create) = F
ismember(i.insert(i3)) 5 if equal(i,iJ then T else ismember(i,s)

Figure 4: Semantic specification for abstract type intset.

1 (a) Is 4 a member of the set {1.2,3)1 I

F

(b) is 2 a member of the set {1,2

I I

Figure 5: Reducing expressions by axiomatic su6stitution.

Gifford has the n
simple, fast, secu
works. Mult i l l~~
based on Digital I
DOS, the only
operating system
designed for net^

users can sl
printers transpar
also take advant~
tiuser features lil
record lockout. I
has added a bum
that makes MUM
DOS easy to insl
get right to work

Our net is A1
Multiuser Concl
DOS utilizes Da
ARCNET, the r~
lar network hard
the industry. It's
economical, and
you can add usa
without overloac
ing the network.

You can ncr
work up to 255
single and multi
user systems. Yo
can connect sina
multiuser Gia
systems as well r
processor G i a
systems can run
CP/M or MP/h
can run 16 bit C
programs as wd
MS-DOS appli
Lotus 1-2-3:

Giord r
net

Our enhancem
I DOS make it p
I better workdon

wide features u
event calendar,
communicatio~
accounting and
generation, tele
user expandabl

programmer must know what
bles are used in the implemen-

ion of the data type, in order to
abusing the type by inadvert-

using one of these variables for
erent purpose elsewhere.

n a pure information-hiding en-
ronment this would not be the case.

n a data abstraction truly hides
oncrete representation of a type,
the way one type is represented
ot interfere with how another is.
n BASIC this does not come auto-
cally since all variables have a
al scope and the representation
ne type can therefore interfere

if the variables are not
ASIC programmer must
content with a weaker
abstraction that hides

e meaning and use of the data
tures that implement an abstract
but cannot hide their names.
er an abstract data type has been

specified, as discussed in the preced-
ing sections, there are three steps in
its implementation: (1) define the user
interface, (2) define the concrete rep-
resentation, and (3) implement the
operations. Each of'these steps will be
considered in turn.

DEFINING THE USER
INTERFACE
The user interface refers to what a
person must know in order to invoke
the operations of the data type. For
each operation, the following items
must be defined: the line number
where the subroutine begins, the
variables in which input parameters
are passed to the operation, the
variables in which values are returned,
and the variables in which exception
codes are signaled. All of this infor-
mation can be conveyed in a one-line
REM (remark) statement that serves
as a header for the subroutine. (The

version of BASIC used in the listing
below allows ' as shorthand for REM.)

Figure 6 illustrates a possible defini-
tion of the user interface for the
abstract type intset. Note, for instance.
the header for the operation "insert."
The address of the subroutine is iden-
tified as line 1200. The input para-
meters (a set identifier and an integer
to insert into the set) are passed in the
variables S and X respectively. The
operation returns s as the set identifier
of the resulting set. The operation
may signal one of three exception
codes; this is done with three vari-
ables that return a Boolean value. If
one of these variables has a value of -
true when the subroutine returns,
then that condition has occurred.
Thus the insert operation may signal
"not a valid set" in NS, "not a valid
integer" in NI. or "no more room" in
NR.

(continued)

hleet The ControUers. - -

Cmrtrol Power: Peripherals,
Spikes, and Glitches.

Puts on/off control of your computer,
terminal, printer, and more at your

n fingertips in a slim panel unit sized to fit
underneath your computer terminal.

Additional switches

elax Technology. The company that works so you can relax andge t down to business:

Contains a master switch (to turn your
computer, terminal, printer, a modem or

: a lamp on or off at the same time) and
three additional switches to turn
~eri~herals on or off in any order.

Power Control 2: $89.95'
10 a v circuit breaker: RFInoise
filtering. IEC power connector:
Power Control 3: $129.95'
Cross suppression between all 4 outlets.
Illuminated switches. %stage RFIfilter:

Check for $ --enclosed.
VISA Mastercard

Exp. D a t e - Bank #__-
Name--
Address--
City---

e 309 on inquiry card. OCTOBER 1984 . B Y T E 423

DATA ABSTRACTION

1000 'abstract data type: INTSET
1100 %reate() returns(s) signals(os)
1200 'insert(s,x) returns(s) stgnals(ns,ni,nr)
1300 'remove(s, x) returns(s) signals(ns, ni)
1400 'isempty(s) returns(b) signals (ns)
1500 'ismember(s,x) returns(b) signals(ns,ni)
1600 'display(s) signals(ns)
1700 'kill(s) signals(ns)
1800 'intersect(sl,s2) returns(s) signals(ns,os)
1900 'union(sl,s2) returns(s) signals (ns,os,nr)

Key to exception codes:
I

ni = not a valid integer
nr = no more room
ns ~i not a valid set
0s = out of set8

Note also that figure 6 defines four Intersect produces a new set that is vironment for testing our implemen-
new operations on type intset: the intersection of two existing sets. tations of the intset abstraction.
display, kill, intersect, and union. Dis- Union produces a new set that is the
play prints the contents of a set on the combination of two existing sets. USING THE ABSTRACT DATA
screen. Kill deletes an existing set. These operations provide a fuller en- WPE

With the design of the user interface
in hand, we know enough to write a
program that uses the type. Figure 7
gives the overall design for a program
to test an implementation of intset. (It
overlooks the details of what to do
when an exception is signaled.) The
test program repeatedly takes a one-
letter command and two numerical
arguments, executes the named oper-
ation, and displays the resulting set.

See listing 1 for the test program.
As an example of how to use an oper-
ation, consider the use of insert in
lines 410 and 420. The operation is in-
voked by GOSUB 1200, but before
calling the subroutine we must pass

Figure 6: User interface for abstract data type intset. the parameters. The interface requires
(continued)

that the set identifier be passed in S
and the integer to insert in X, thus the
codeS = Pl X = P2. In line 420, the
statement GOSUB 1600 calls display.
This too requires a set identifier in S
but since insert returns with the cur­
rent set in S, there is no need for an

DATA ABSTRACTION

assignment statement to pass the pa­
rameter. As long as S was not an in­
valid set identifier, that is, as long as
NS = False. we display the resulting
contents of set S. It is assumed that
all exception conditions will generate
an error message when they are dis-

----- - - - - --------------

PROCEDURE [es: Inlset abstraction:
Initialize abstract data type Intset
REPEAT until commanded to quit

Get a command and two parameters (p1 and p?)
CASE of command

c d!splay(create())
d. dlsplay(p1)
e Isempty(p1)
i display(insert(p1p2))

k kill(p1)
m: ismember(p1,o2)
q: qUit program
r: dlsplay(remove(p1,p2))
u dlsplay(unlon(p1, p2))
x dispiay(intersect(p1. p2))

Figure 7: Design for program to tcst an implementation of intset

Come visit us in our
New York City Showroom

Columbia, Corona, Zenith,
Leading Edge, Televideo, Sanyo,

Tava, & IBM PC

Amdck

OTHER POPULAR
COMPUTERS

Epson, Cromemco, NEC PC,
Altos, North Star, Dual 68000,

DEC Rainbow, OSM

PLOTTERS/DIGITIZERS

flouston InstruOlent

Hew\('tt Packud

X95
1,795

795

CALL
... 725
CAl.L

For thc configuration as shown in the above nmvch3.rt,

SPECIAL
CALL FOR $5,800.00

(cables included)

covered by intset If NI or NR occurs,
a message will be given but we still
want to display the current status of
S, The use of the other operations
follows the same principles

It is important to note that we were
able to write a program using Intset
before we decided how the type is to
be represent(;d or implemented. This
is the power of information hiding and
data abstraction at work. As long as
we stick to the interface definition in
figure 6 when we implement the data
type, the test program will work

There is, however, one slight com­
plication brought on by the global
scoping of all variables in BASIC Our
test program is guaranteed to work
only if we avoid variable conflicts The
test program happens to use three
variables of its own that are not part
of the i ntset interface, These are C$,
P1, and P2. The test program is

(continued)

Se Habla Espanol

PRINTERS
EPSON, OKIDATA
full line

"FC 2050
J550

Cltoh F~W
.luki fi 100
Qllme 11/40

cps, grapll:c

I.cttn Quality

2() cr~ for IB~\'l PC.
35 cp~ fu) IBi\·l P('
4(l cps.
1 ~

Star POWPf Type 18 cps
Diablo 630 ECS/IBi\1 ext. char. set
Dynax Hl{3S 33
Comrl'X Comwriter III.
Tmnstar 315 grapnic, ,--,olar.

MONITORS
(TER\lIN·\LS: IlAZELTl'lE, ?E"ITH. WYSE. VlseAl
Panasonic amber ,~\lpcr
Comrr< CR6800 14"RGIl
:\"EC JC1216 RGB monitor, 640x300 resolution.

1812(11 20 \1hz monitor
Princeton Graphic RGB monitor ..

SR12 RCIl

Call
1,100
.799
.379

.CALL
545

.840
1.6111
.99'1
.459

1,420
.399
2,100

910
740

.479

CALL)
.199
.489
.435
.185
.490
.630

Amdck 300 12" .155
Color .7111

Zenith ZVM 123 87 Calcomp M84

940
1,640
1,650 Packagc' Wilh 10 vlB hard disk aho a,<,ilank ZVM 122 .135

.----------------------1 ************* CAl J. FOR DETAIl.S ****hh*",*,.* h~~Z~V~M~13~53R~G~B~rn~o~ni~toIr~fO~r~I~IlM~P~C~. ~~~'Z4~751

POWERFUL ADD-ON BOARDS

from AST. T'FRSYST. PI ANTRCJNIt'. TLC\lAR.
QLiADRA\!, HERCULES. Tn AI';

MORE FOR YOUR IBM PC

426 II Y T t: • OCTOBER I ~84

MODEMS
HAYES SmartIllodem JOO/1200

1200B modcm for IBM
eSR 300/1200 bps parallel pon.S50

Password 300/1200 modem 339
NOVATION 415

.450

~~:~h~%~~~n;v~
Farmingdale, NY 11735
For information CALL (516) 420-0142
To order CALL 1-800-331-3343

TELEX:
429418
CSTNY

Circle 64 on inquiry card

DATA ABSTRACTION

guaranteed, therefore, only if the im-
plementation of intset stays away from
these three variable names. Converse-
ly, if we begin with an already imple-
mented data type and want to write
a program that uses it, that program
may not use any variable as a free
variable that is used in the implemen-
tation of the data type.

DEFINING THE CONCRETE
REPRESENTATION
The second step in implementing an
abstract data type is to define the
concrete representation. A straightfor-
ward representation for integer sets
is to store them in a matrix where
each row represents a set and the col-
umns hold individual set elements. A
value of - 1 means that the matrix cell
is empty: a positive integer is a set
element. A value of - 1 in column 0
means that the whole row is unused.

Note that in figure 6, the first oper-

ation is not coded until line 1100. The
lines between 1000 and 1 100 are re-
served for comments that describe
the concrete representation, followed
by an initialization subroutine that
sets up the storage space for the data
type as required by the method of
representation. This subroutine is the
first thing called by the test program
of listing 1.

Listing 2 gives a full implementation
of intset with an underlying matrix
representation of 11 sets (in rows 0 to
10) with 10 elements each (in columns
1 to 10). Note lines 1000 to 4040,
which are comments describing the
method of representation, and lines
1050 to 1080, which define an ini-
tialization routine that sets up the
storage space for intsets.

~MPLEMENTING THE OPERATIONS
Now we are ready for the third step.
implementing the operations. The

headers defined for the user interface
(see figure 6) serve as the first lines
for the subroutines that implement
each of the operations. Given the rep-
resentation of the data type and the
variables specified in the header for
parameter, result, and exception code
passing, the implementation of the
operations falls into place. See listing
2 for the complete implementation of
the operations. Note that the imple-
mentation makes use of two private
subroutines [at lines 2000 and 21001
for checking the validity of param-
eters s and x. These do not appear
in the list of operations of the data
type (figure 6) because they are
meant to be used only from within the
module, not by outside users.

A new complication presents itself
when implementing the operations.
That is the problem of local variables.
One must ensure that the extra vari-

(continued)

Listing 1 : Program for testing the intset abstraction.
100 GOSUB 1000 'initialize INTSET storage
110 T=- 1: F=O 'initialize TRUE and FALSE
200 INPUT C$,Pl,P2: IF C$< "a" THEN C$ = CHR$(ASC(C$) + 32)
250 IF C$ = '%' THEN 260 ELSE 300
260 GOSUB 1100 %reate()
270 IF NOT OS THEN GOSUB 1600 'display(s)
280 GOT0 200
300 IF C$ = "dd" THEN 310 ELSE 350
310 S= PI: GOSUB 1600 'display(p1)
320 GOT0 200
350 IF C$='B" THEN 360 ELSE 400
360 S= PI: GOSUB 1400 'is-empty(p1)
370 IF NOT NS THEN IF B THEN PRINT 'True" ELSE PRINT "False"
380 GOT0 200
400 IF C$ = "I" THEN 410 ELSE 450
410 S= PI: X= P2: GOSUB 1200 'insert(pl,p2)
420 IF NOT NS THEN GOSUB 1600 'display(s)
430 GOTO 200
450 IF C$ = " k THEN 460 ELSE 500
460 S= PI: GOSUB 1700 'klll(p1)
470 IF NOT NS THEN PRINT "Set";S;"deleted"
480 GOT0 200
500 IF C$ = "mu THEN 510 ELSE 550
510 S = PI: X= P2: GOSUB 1500 'is-member(pl,p2)
520 IF NOT NS AND NOT NI THEN IF B THEN PRINT'True" ELSE PRINTUFalse"
530 GOT0 200
550 IF C$ = $" THEN 560 ELSE 600
560 STOP Quit program
600 IF C$ = "r" THEN 610 ELSE 650
610 S- PI: X= P2: GOSUB 1300 'remove(pl,p2)
620 IF NOT NS THEN GOSUB 1600 'display(s)
630 GOT0 200
650 IF C$= "u" THEN 660 ELSE 700
660 S1 = PI: S2 = P2: GOSUB 1900 'union(p1 ,p2)
670 IF NOT NS AND NOT OS THEN GOSUB 1600 'display(s)
680 GOT0 200
700 IF k$ = "xu THEN 710 ELSE 750
710 S1 - PI: S2 = P2: GOSUB 1800 'intersect(pl,p2)
720 IF NOT NS AND NOT OS THEN GOSUB 1600 'display(s)
730 GOT0 200
750 PRINT "Unrecognized command": GOT0 200

DATA ABSTF

D a k a6stractioM allows cedure always inherits the local vari- ing. We decide we want to modify o
.. ,- ables of any procedure ?t calls. program to allow for sets of up to

uflu to monodity a program elements. Because the informati
MAINTENANCE AND PORTABILITY about how the intset abstraction simp1 y 6y changing a From the perspective

modu[ts jnrnlnwAntrtnt inm code that is outside 2
rr~LcrfLcrruLr"rr. type, we have already seen that an ad- the abstraction (in this case the

vantage of programming with data ab- program of listing I) are not affec
would be tempted to use I as the local stractions is that you can write pro- The only changes to make include
indexing variable as is done in all grams that use them without knowing defining the matrix dimensions in
other operations. However, intersect how they are implemented on the in- initialization procedure (lines 10
calls insert (line 1200 and following), side. Now we take the perspective of 1080) and changing the upper bo
which already uses I and J as local the program code inside the abstract of the FOR statements in all the su
variables; we see this by looking at data type and see that an advantage routines for the operations. We s
the local statement in the header of of programming with data abstrac- discover that this latter change
insert. This alerts us to the fact that tions is that you can modify the im- rather tedious and that we would
if we use I in intersect we are in for plementation without affecting the been better off in the first pla
trouble; every call to insert would outside programs that use it. This is make the maximum size of a set
destroy its value. Thus, we use a new a boon for maintaining a program and variable in the concrete represen4
variable. K. Note also that the local porting it to other systems. tion of intset. and then to use thaf
variables for intersect are given as I, For instance, suppose we decided variable in the FOR loops for all th9
J, and K, even though I and J do not that limiting our sets to a maximum subroutines. Then changing the max?
appear in the code for the intersect of 10 elements (as does the imple- imum size of sets would mean changd
operation. This is because a pro- mentation of listing 2) is too restrict- (contin4

I IBM PC

Ok~data 92
mldata 93
CX~dsla 82
CXldfla 83
Epson RXBO FX
E p n RXBO
Epson RXlOO
Epson FXBO
b n n In

WUJ.J9 - I I 11 comes in at anv standard
-1-

Gernlnt 10X
Gernlnl15X
Radll 15
Radix 10
Brother HR15
Bmlher HR25
Brother HR35
Keyboard
1.M".

JUkl61M
TrBCIu
Panasonc KXP 1091
P a n m c KXP 1090
Silver Reed EXP 550
Sllver Reed EXP $00
Silver Reed EXP 770
ltoh Prrmntar 8510

PC 64K 1399
PC XT 3299
Pnnter Card 89
TandOnDnw 169
Monnu Card 139
Color Card 169
IBM Monitor (GRN) 244
H m u k Gnphc

k(asler 309
Koala Pad 74

79 StrrmnterFlO 869
169 Nec3550 1389 220 v ac or 12 v bc 1.2 I":.i

APPLE
MB per tape side Uses chrome oxide audio cassettes Ha

2Er,D1skDma 798 hold~ff during playback via CTS line No data ho ld4 durin(
M~~lrd-h 1749
bple 2c 939 record.

498
79

CPM 2 lrn APPLICATIONS:
RGB Card 124
Aln Dmsr Fmn S99A Up
S p l m 1 r F a n 1 1 11 Koala Pad

PROCESS CONTROL POINT OF SALE TELEPHONE

ASTSlr Path 239
d SINYO 74 SWITCH LOGGING (SMDR) INSTRUMENTATION DlAG

I T.lbw...Dnum on.c -as C~YM-E SMSS 62 NOSTIC SUPPORT PROGRAM LOADING DATA LOGGING ." "=

ATARI
BOO XL
1027 Pnntw
lOMDnve

.- -. . . . - . . -
Arndek300GIWll
Amdek 300hber
Cobr 1 1
ColOr2 1
CDlw4
310Arnber
BMC Green
Banana Green
Taxan210

~ ~ r n m o d a s ~ 184 ;:;;
1541 DldIDnve 214 5 5 5 0 s
1702 M o m r 214
M P W ~ Pnntar 179 12FY8
ig:- '2 Hayesl2W8

Hayes 3 w
FRANKUU MrmmodemzE

l W P m 679 Acoeap I23
12WOUS I059 NovalDnScal

436 B Y T E OCIOBER 1984 Clrde 148 on lnqulry card.

1410 GOSUB 2000: IF NS THEN RETURN
1420 IF S(ST(S),O)=- 1 THEN B=T ELSE B = F
1430 RETURN
1495 '
1500 'is-member(s,x) returns(b) signals(ns,ni) local(i)
1510 GOSUB 2000: IF NS THEN RETURN
1520 GOSUB 2100: IF NI THEN RETURN
1530 I = ST(S)
1540 IF S(I,O) = - 1 THEN B - F: RETURN 'end of set, not found
1550 IF S(I,O)< >X THEN I =S(I,l): GOT0 1540 'not yet, keep looking
1560 B=T RETURN 'it is found
1595 '
1600 %lisplay(s) signals(ns) local(i)
1610 GOSUB 2000: IF NS THEN RETURN
1620 PRINT 'Set";S;" = {";
1630 1 = ST(S)
1640 IF S(1,O) - 1 THEN 1660
1650 PRlNT S(I,O);: I = S(1,l): GOT0 1640
1660 PRlNT "1": RETURN
1695 '
1700 'kill(s) signals(ns) local(i)
1710 GOSUB 2000: IF NS THEN RETURN
1720 1 = ST(S)
1730 IF S(I,O)< > - 1 THEN I =S(I,l): GOT0 1730 'find end of set
1740 S(I,O) = 0: S(I,l)= A: A = ST(S) 'return cells to available list
1750 ST(S)=- 1: RETURN 'mark ST entry unused
1795 '
1800 'intersect(sl,s2) returns(s) signals(ns,os) local(i,j,n)
1810 S= S1: GOSUB 2000: IF NS THEN RETURN
1815 S=S2: GOSUB 2000: IF NS THEN RETURN
1820 GOSUB 1100: S3=S: IF OS THEN RETURN beate a new set for result
1830 J = ST(S1)
1840 IF S(J,O) = - 1 THEN 1870
1850 X = S(J,O): S = S2: GOSUB 1500 'if a member of S1 is in S2,
1855 IF B THEN S=S3: GOSUB 1200:IF NR THEN 1870 'then insert in result
1860 J = S(J,l): GOT0 1840
1870 S=S3: RETURN
1895 '
1900 'union(sl,s2) returns(s) signals(ns,os,nr) local(i,j,n)
1910 S=Sl: GOSUB 2000: IF NS THEN RETURN
1915 S = S2: GOSUB 2000: IF NS THEN RETURN
1920 GOSUB 1100: S3=S: IF OS THEN RETURN 'create a new set for result
1930 J zST(S1) 'insert every element of S1 into result
1940 IF S(J,O)=- 1 THEN 1960
1945 X=S(J,O): S=S3: GOSUB 1200: IF NR THEN 1990
1950 J = S(J,l): GOT0 1940
1960 J = ST(S2) 'insert every element of S2 into result
1970 IF S(J,O) = -1 THEN 1990
1975 X=S(J,O): SzS3: GOSUB 1200: IF NR THEN 1990
1980 J = S(J,l): GOT0 1970
1990 S = S3: RETURN
1995 '
2000 'is-not-set(s) returns(ns)
2010 IF S<O OR S>10 THEN NS=T PRlNT S;"not a valid set number": RETURN
2020 IF ST(S) =- 1 THEN NS= T PRlNT '3et";S;"not created yet": RETURN
2030 NS= F: RETURN
2095 '
2100 'is-not-integer(x) returns(ni)
2110 IF X<O OR X< >INT(X) THEN NI =TPRINT X;"not a valid integerM:RETURN
2120 NI = F: RETURN
2195 '
2200 'get-next-cell() returns(n) signals(nr)
2210 IF S(A,O)-- 1 THEN PRlNT "No more room": NR =T RETURN
2220 N =A: A= S(A,l): NR = F: RETURN

I

t o the interface of figure 6 and there-
fore is equivalent to the matrix imple
mentation in its external effects. The
test program works equally well:
whether o n e combines it with the
intset module of listing 2 o r the
module of listing 3.

Since nearly any two implementa-
tions of BASIC differ in some details,
BASIC programs turn out t o b e of
limited portability in actual practice.
Writing software in terms of data
abstractions is an excellent way to
enhance a program's ultimate porta-
bility, Information hiding localizes the
details of implementation that are
likely to b e changed, such as variable

7

)evelop
~vocet cra
nd user-p
se. Ask
undreds I
?em. Eve
~rocessor
hance it
ross-asse
ivocet crc
hey run

uter and1
he most p

four COI
Zompletc
Gocet ha
ind assen
ast it in E
JEDlT TI
!ntry a sr
ECO-like
asks. Ea
iram sup
lersonal
reyboard
VISDOS, I
EPROM
aram, ve
EPROMS
:ommunu
:omputer
modules!
menu-ba
EPROMS
devices r
containec
RS-232 i'
Driver SI
you acce
through
load cra
EPROM

Model 7
- S y m
fast adz
program:
Model 7
Lower-cc
PROM tl
and 2712
rithm prc

	Data Abstraction 130
	Data Abstraction 131
	Data abstraction 414
	Data Abstraction 416
	Data Abstraction 418
	Data Abstraction 420
	Data Abstraction 423
	Data Abstraction 424
	Data abstraction 426
	Data Abstraction 428
	Data Abstraction 430
	Data Abstraction 432
	Data Abstraction 434
	Data Abstraction 436
	Data Abstraction 438
	Data Abstraction 440

