
Extended Objects
Despite the name of this
column, some install-
ments have focused less
on practice than on
p r ac t i c a1 philosophy.
The last two- “Hat
Racks for Understand-
ing” and “Cooperative
Software” -advocated a
set of ideals or goals that
could guide the design of
the next generation of
applications software.

It is time to talk about
these ideals in actual
practice. Suppose some-
one set out to build soft-
ware that facilitated
understanding, that
acted as a cooperative
partner in the problem-
solving process. What
would that software look
like? What internal
structures would it have?

Programmers at the
Academic Commtine.

0

Department at the Summer Institute Supportive applications require a (or, to use another set of terms, a
of Linguistics (SIL) in Dallas, Tex., conceptual model of the application domain-oriented cooperative tool for
have been building such software for domain. An environment for building building domain-oriented cooperative
the past three years. The result is called supportive applications should have an tools). I interviewed the two architects
CELLAR: Computing Environ- excellent domain-modeling facility. of CELLAR, Gary Simons and John -
ment for Linguistic, Literary, and
Anthropological Research (a name
which reflects the project’s original
motivation more than its nature).

One of the key technologies in
CELLAR is a set of fundamental
extensions to the object-oriented
approach to software development.
Having decided what would be
necessary for excellent applications
support, the designers decided that
these things should be implemented in
the innermost parts of the system. This
makes things like multiple views of
information available throughout an
application, at any level of granularity.

Project Vision
This work is driven by a vision for
usable high-functionality software, a
philosophy of training by immersion,
and several key insights. Among
them:

-
Supportive applications require

access to the structures and relation-
ships contained in information, which
are as valuable as its content.

Looking at information in many
arrangements and organizations leads
to new understanding. Supportive
applications allow users to define
and use multiple views without
programming.

The resulting architecture uses an
extended object model, summarized in
Figure 1. On top of this, the group is
in the process of constructing a “Per-
formance Shell,” which is basically a
performance support system for
building performance support systems

W
Marc Rettig,

G a y Simons and
John Thomson

Thomson. Simons is an experienced
field linguist and accomplished com-
puter scientist, acting as project leader
and “keeper of the vision” for the proj-
ect. Thomson is the lead designer and
chief implementor. Most of this col-
umn is a heavily-edited transcript of
our two-hour conversation about their
design, the ideas behind it, their
experience in building it, and their
vision for the future.

Views, the first Extension
MR: I’ve heard you say that CELLAR
is a marriage of database and docu-
ment technologies. Tell me about this.
JT: People tend to think in terms of
creating documents, but often they
really want to create a knowledge base.
For instance, it is tempting to use a
word processor to create a dictionary
so that one can get the formattingjust
right, when one should really be

COYYUNBCATBON8OrTum 1- August 1993/Val.36, No.8 19
L

creating a database of highly struc-
tured information. We therefore
wanted to build a system in which a
knowledge base of structured and
interrealated objects could be pro-
jected onto the display as though it
were a document.

For this purpose we extended the
object model to add the notion that
every object (by virtue of its class def-
inition) ought to encapsulate a set of
methods for displaying itself. These
methods we called views.
GS: Our descriptions of these views
are declarative. Unlike a traditional
approach that would demand you
write a procedure to build a display,
our views are defined by a declara-
tive template that specifies how
chunks of information are laid out in
relation to each other and what for-
matting properties they have. It’s
really an integrative statement of
what I want the object to be laid out
like. All of the procedural aspects of
building the interface are left to the
underlying CELLAR facilities.
JT: Another interesting characteris-
tic of views is that, when you build a
view, you not only have a way of lay-
ing out the data, you implicitly have a
way of editing it as well. The under-
lying implementation of CELLAR
supports editing operations on infor-
mation displayed in views, so that
each view defines a structured editor
for the object class.
MR: Where some systems separate
everything into functional layers
which talk through a protocol, you
have embedded the interface directly
in the data.
GS: That’s right. It’s not a system
where you have all the data here and
all the interface over there. We orga-
nize such functionality by objects,
and what you usually wind up with is
a hierarchy of objects and views. Big
objects ask little objects for views of
themselves.
MR: One of the advantages always
touted for OOP is reuse of objects. It
sounds like the business of nesting
views within views is buying you
some reuse.
JT: Yes. Many OOP systems don’t
make as clean a separation between
the information and the way it is dis-
played. One typically designs an ap-
plication by starting with a user inter-

face and then working back to figure
out what underlying objects it will
take to support it. You’re fairly lucky
if the underlying objects wind up
supporting more than that single
application that you’ve made them
for.

But our approach always begins by
building a conceptual model of the
objects in the problem domain, and
then adding definitions for different
views as they become needed. I think
in practice we actually wind up with
more reuse of the same object by
having different ways of looking at it.
A very typical object in our system
might have half a dozen views which
are each like little applications.

GS: And when you want to reuse
an object, you can add another view
without having to change any
existing code.

Parts and Relationshlps
MR: I understand that another early
innovation was the distinction be-
tween parts and relationships: like
having two kinds of instance vari-
ables, from the programming point
of view. What about the conceptual
modeling point of view? Why did you
do this?
JT: There is something very funda-
mental about the part-whole rela-
tionship. The whole-in our system
it’s called the “owner”-has a privi-
leged relationship with its parts. For
one thing, every part needs an
owner. You can’t have a subentry in a
dictionary without having an entry
that it’s part of.
MR: So you are avoiding database
anomalies through constraints on
different kinds of attributes.
GS: Yes, and the privileged relation-
ship that an owner has with its part is
a key concept. In views we require
that you can’t edit something without
its owner being a gatekeeper, be-
cause when you change a part you
are also changing the whole. There
are special integrity checks to pre-
vent parts from being edited when
they are not displayed in the context
of the whole of which they are a part.
MR: And how do you achieve nor-
malization in the database?
GS: This is where relationships come
in. There is only one copy of any
piece of information-modeled as an

- .a- - .- 4- .A- 4-

object-which is owned by a single
larger object in the part-whole hier-
archy (see Figure 2). Any object may,
however, be related to many other
objects in the knowledge base. We
represent this with “relationships,”
or “references” as we also call them.
Every instance variable (which we
actually call an “attribute” of an ob-
ject in our model) is declared to be
representing how an object owns
other objects that are part of it or re-
fers to other objects that are related
to it.
JT: Note that this distinction between
parts and relationships has given us a
very natural solution to the classic
problem of “shallow” versus “deep”
copying. There is a very clear desig-
nation about which things are part of
the object and which aren’t. When
you copy a dictionary entry, for in-
stance, you know you should copy all
its subentries, but not copy all the
objects they refer to as synonyms. It
seems to have worked reliably.

Integrity
MR: Tell me more about the integ-
rity information in these objects.
JT: This is in some ways an area in
which we are ahead of the object
model, and in another way an area in
which we have limited it. In a pure
object-oriented language like
Smalltalk, the end user has no way to
access instance variables directly; this
must be done by writing methods or
functions which access them. If
someone writes the access method
well, they can do whatever integrity
checking they need. But they can, of
course, write access methods that
don’t check integrity at all.

In our system we wanted a little
more freedom to access the attri-
butes, as we call them. We don’t force
people to write access methods.
However, we do want to ensure in-
tegrity. Thus we have gone beyond
the traditional object model in re-
quiring that every class definition
includes a definition of what it means
to be a valid instance of the class.
MR: How do you accomplish this?
GS: Rather than having class defini-
tions that just list their instance vari-
ables, our class definitions largely
consist of attribute definitions. It’s
these attribute definitions that state,

20 August 1993/Va1.36, No.8 COMMUNICATIONS OC THm I C Y

- a - - - _ I _ _ L _

in a declarative way, the intention of
the knowledge engineer concerning
what it means.to be a valid instance of
that attribute. These declarations
give a “signature” listing classes
which are valid as values of the attri-
bute, tell whether the value must be
single or can be a set or list, provide a
default to use when the value is miss-
ing, specify a discipline for keeping
values in an ordered list automati-
cally sorted, and declare constraints
on ranges of values or relations to
values of other attributes. The latter
may be mandatory, but more com-
monly they are “critics” which give
suggestions or point out inconsisten-
cies. They post messages to an “in-
tegrity agenda,” which users can
browse at leisure when they are in
the mood to clean up the knowledge
base.
MR: So, where most languages just
declare variables, list the names and
maybe declare type information, you
have much more.
JT: Yes, and this approach of em-
bodying integrity information in de-
clarative attribute definitions, rather
than writing it into access methods,
buys us something else. It allows us to
be somewhat lazy about integrity. We
don’t have to check integrity the
moment you set a value; we simply
post an entry on the integrity agenda
that says a given value needs to be
checked against the constraints on its
attribute definition. We can allow
incomplete or invalid states to persist
until the information is available to
rectify things. We have a mechanism
through which you can absolutely
forbid a condition if you want to. But
for many application areas with a lot
of uncertainty, like field linguistics, it
is very helpful if you can violate a
constraint temporarily.

Parsers
MR: Okay, I see in this list (Figure 1)
that a class can also encapsulate a set
of parsers? What does that mean?
GS: That’s another way we have ex-
tended the object model. Another
thing an object needs to know about
itself is, “What would I look like if I
were represented in an ASCII text
file?” and “How would I convert that
text representation into an instance
of myself?” There are multiple pars-

Practical Programmer ------ -- _I_

Traditional Objects
Encapsulate To represent

Instance variables
Methods or functions Behaviors

Internal state-parts and relationships

Extended Objects
Encaps ulate To represent

~~

Parts
Relationships
Integrity constraints

Views
Tools
Queries

Methods

Parsers
Tasks

objects owned by an object
objects related to an object
how to know if an object is

ways to display an object
ways to directly manipulate an object
questions this object can answer about

itself and related objects
ways this object can update the

knowledge base
ways to represent this object as text
user activities involving this object

complete and valid

Conventional Approach
1- Operating System .-\ 7 Text Editors -,
I \ / Commands \

subdir <
subdir <
subdir

root directory

CELLAR’S Seamless Approach
/-------- CELLAR User Interface -\

front matter section genre document section < Fzz
section library 4 genre 4 document 4 ~~~$~~

\ document \ back matter ‘ genre

ers defined on most classes, each of
which describes a different possible
text file encoding.
MR: What are these parsers like?
GS: They, too, are declarative state-
ments. They are essentially regular
expressions which specify the pattern
of how literal keywords and separa-
tor characters mark off the chunks of
information. These elements of in-
formation may be simply strings or
numbers at the lowest level, in which
case they are recognized by built-in
parsers on those classes, or they may
be other objects from the problem
domain, in which case they are rec-
ognized by calling a parser defined
for that class. We get the same kind

Figure 1 Tradltlonal
obJects compared wlth
extended objects.

presents a single “part-
whole” hlerarchy of
ObJects to Its users,
each contalnlng Its own
manipulation toots.
There may be a complex
web of stored relatlon-
ShlpS between any
ObJects In the hierarchy.

Figure 2 CELLAR

COYYUNBCATIO~8OLTYm I C Y August 1993/Va1.36, No.8 21

r w

of reuse of parsers for smaller objects
within parsers for larger objects as
we do for views within views.
JT: In fact, we have used this gen-
eral-purpose parsing mechanism to
build “source code” parsers for our
modeling language. We represent
“code”-the class and attribute de-
scriptions, the queries, the parser
definitions, everything executable-
as a nested structure of objects. As a
consequence of having parsers as a
part of a class definition, we have
been able to define a source code
syntax and parser for all of our pro-
gramming objects. Furthermore, it’s
quite possible for an end user to
write a new programming syntax just
by writing a new set of parsers for
those kinds of objects.
GS: We have also implemented a
structured editor for source code by
defining views for all the program-
ming classes that make the objects
look like source code.
MR: So, much of the system is writ-
ten in itself. There are conceptual
models of the classes which have to
do with programming, and the
source code editors are written as
view and parser definitions on these?
JT: Yes, and though we haven’t done
much of it yet, we hope that we can
define another set of views that will
create a visual representation of pro-
grams, showing the functions on
streams of objects as a data flow
machine.

Tools
MR: What are tools?
GS: They represent another kind of
thing that an object should know
about itself all the possible ways that
someone could manipulate it.
Whereas a view gives a static projec-
tion of the information in an object, a
tool provides a dynamic mechanism
for manipulating the information in
an object. A tool is a window that in-
cludes panes, buttons, menus, and
other conventional controls. Defin-
ing a tool and the layout of the con-
trols within it is very much like defin-
ing a view-the same declarative
language is used. Launching a tool is
just a matter of sending a message to
an object: “Launch your x tool.”

One tool that’s implemented on
most things is called “browser.”

Practical Programmer

There’s a system browser, and fold-
ers have browsers. If you click on
things like dictionaries, they will have
specialized browsers as well.
JT: We’re hoping that this will go a
long way beyond the kind of thing
that Smalltalk does by having inspec-
tors that will let you see any part of
any object. Only a few classes in the
whole Smalltalk system have their
own inspector. We’re hoping it will
be so easy to build customized brows-
ers that almost every class will have
one.

- en- --*.4- - .-

Tasks
MR: What about tasks? What are
they?
GS: We are extending the object
model to incorporate the end user’s
perspective on objects. In the tradi-
tional object-oriented approach, the
methods encapsulated in objects de-
fine how programmers can access the
objects. The same is true of the attri-
butes, queries, views, and parsers in
CELLAR. Tools give users direct ac-
cess to manipulate objects, but are so
broad in function that users may be
at a loss to know how to use them to
perform a specific task. For instance,
one uses a word processing tool to
perform tasks like “insert a new sec-
tion,” ‘‘join two paragraphs,” or
“change type size.” When users sit
down to a tool, they have these kinds
of tasks in mind, and they get frus-
trated when they do not see how to
relate these tasks to the controls of
the tool.

What we have discovered is that
this kind of knowledge, the knowl-
edge about user tasks, really belongs
in objects. The things a user might
want to do with a dictionary need to
be encapsulated with the definition
of a dictionary. The things a user
might want to do to the entries of a
dictionary, to the subentries, and so
on . . . each belongs with the class
definition. So we are extending the
model to describe not just how ob-
jects might talk with each other, but
also how an end user might want to
use these objects. We are working on
adding “task definitions” to our
model, which would describe tasks an
end user might want to perform.
MR: How do you define a task?
GS: We have an abstract class called

Ih -I- 4- 4- -_ -Z^ 44

TaskDefinition which has five con-
crete subclasses.

The simplest kind of task defini-
tion is for an “automatic task.” It as-
sociates a taskname (which is a brief
statement of what the user is trying
to do) with a bit of program code that
can automatically do it.

Another is a “manual activity.”
When such a task definition is per-
formed it simply displays an explana-
tion to the user of how to do it.

The other three kinds of tasks build
complex definitions by nesting sub-
tasks.

A “choice task” offers the user a
choice among possible ways of doing
something (which are in turn ex-
pressed as tasks).

A “sequence task” presents a cue
card which walks the user through
the steps of a task, tracking progress
along the way.

A “process task” has a number of
subtasks which are performed in any
order and as often as needed to sat-
isfy some given constraints.

MR: And how do users invoke these
task definitions?
GS: All CELLAR tools present a help
menu and that menu always includes
an item called “possible tasks.” When
you choose that, you get a scrolling
list of all the tasks defined for the
class of the object which is currently
selected in the screen display. When
you pick one of these, the task defini-
tion executes itself and gives the user
the help embodied within it.
JT: Another item that is always avail-
able in the help menu is “Explain Se-
lection.’’ It tells the class of the se-
lected object and tells what attribute
it is filling in the object that owns it.
Two buttons on that dialog box, “Ex-
plain Object” and “Explain Attri-
bute,” go into the class or attribute
definition and retrieve documenta-
tion that explains what they are.
MR: Some people might say, ‘‘I can
see extending objects with interface
stuff, and parsers and queries-
those all feel like programming lan-
guage issues. But end user tasks and
documentation are not part of pro-
gramming.’’ But by putting tasks and
documentation in the class defini-
tions, you’re saying that help and

22 August 1993/Va1.36, Na.8 CoYYunICnT~ons OF THm LCY

Practical Programmer

We’re saying that part of the process of programming
is to anticipate the kinds of things users will need to
know about objects and will want to do with them.

documentation is as much a funda-
mental part of an object as what its
parts are.
GS: That’s right. Presumably if a
programmer is going to the trouble
of implementing a class, he or she is
doing so because someone needs to
use it. We’re saying that part of the
process of programming is to antici-
pate the kinds of things users will
need to know about the objects and
will want to do with them, and that
the program should then provide
help to give this knowledge and assis-
tance when they need it. It’s related
to Gerhard Fischer’s work, integrat-
ing action and reflection, nonintru-
sive help systems.

Also, it’s related to the perfor-
mance support systems starting to
show up in industry. CELLAR will
nicely support a shell for building
performance support systems, since
it is designed to model all the infor-
mation about a problem domain. In
one object-oriented system, it inte-
grates both sides of the equation for
an effective application: what pro-
grammers need to know and do with
a problem domain, and what users
need to know and do. For the pro-
grammer this object-oriented system
supports good programming meth-
odology. For the user it supports
both guided learning and indepen-
dent exploration.

The Development Process
MR: So, developing an application
with this feels different. Will a good
programmer who is used to say,
Smalltalk or C+ + feel like this is for-
eign territory? You’re giving them a
ton of things to define.
GS: Well, step one in the develop-
ment cycle is to build a conceptual
model. That means identifying
classes and attributes, and how they
relate to one another. This is just
garden variety object-oriented analy-
sis, which should be the first step in
the object-oriented programming
project anyway. It has been our aim

to make the analysis and design and
implementation to be one and the
same thing. We want to unify the lan-
guages people use to do these things.
So, when you tell the CELLAR sys-
tem about your object-oriented anal-
ysis, you have implemented the class.
That’s step one, and it should feel
familiar to anyone who is used to
preparing for object-oriented pro-
gramming by doing object-oriented
analysis.

Then you go beyond that to imple-
ment customized views, queries,
parsers, and tools for the objects in
the problem domain. As you get
closer to the end you write documen-
tation and task definitions to help
people use your objects. When com-
pared to “traditional” object-oriented
programming, this may sound like
adding a lot, but we were led to this
approach by the realization that a
complete program has all these in-
gredients anyway. By identifying
these ingredients and building con-
ceptual models and high-level sub-
languages for them, we have been
able to build a system that makes it
easier to define these ingredients
than it is with a general purpose
language.

~mrt and ReSUltS: The cost
of leapfrogging
MR: How about performance and
overhead? Some of the things you’ve
described sound costly. Are your
performance concerns directly re-
lated to extended objects, or are they
just because you’re trying to do
something ambitious?
JT: It’s hard to say. Some perfor-
mance concerns are because
Smalltalk is basically an interpreted
language. There’s a price for its
power, both in time and memory
space. Some concerns are because
the programming language that
we’ve developed doesn’t lend itself
very easily to compilation. That will
make it hard to make big queries that
execute quickly.

On the other hand, the basic view
is interfaces don’t cost us intolerably
much. We can put complex views on
the screen in a second or two on a
fast PC.
GS: These are views which involve
nested views of several hundred ob-
jects, each one of which is running
some code.

Just the matter of automatically
maintaining back pointers for all
pointers in the system doubles the
amount of storage. But our study
shows us that the amount of disk you
can buy for a fixed number of dollars
has been doubling every year. In
light of this, doubling the storage
requirement does not seem like a
very big price to pay for all the bene-
fit it gives us. We’ve chosen to stretch
the limits of the current generation.
We’re targeting that level of hard-
ware that will give us acceptable per-
formance by the time we ship the
product.
JT: Even if it takes longer to get the
performance up to an acceptable
level-be pessimistic and say it’s 1997
before people can afford a computer
that will run this fast enough, and
they could have afforded a suitable
(slower) machine in 1995 that would
be fast enough if we were able to
write very carefully optimized code
in C. The probability is very great
that they still wouldn’t be able to run
it before 1997, because it would take
us two extra years to build it! Or
maybe not before the year 2000.

Vision
MR: What is your vision for the fu-
ture of application development?
GS: I suspect that the role of knowl-
edge engineer may eclipse the role of
programmer. We’re building a pro-
gramming system which is also a
knowledge engineering system. Step
one in modeling a problem domain is
knowledge engineering; step two
might require some tricks of the kind
that programmers do. But program-
mers will have to be knowledge engi-

COYYUNICLTIONSOrTH.ACY August 1993/Vo1.36, No.8 23

Practical Programmer
p * u - --- --<-----I- - -

We are building a system that will allow programmers
in our organization to achieve the programming they

need to do with as little effort as possible. We are
building a performance support system for

applications development.
neers to build a good foundation for
their domain model.
JT: The next generation of tools
should also make it as easy as possible
to develop applications. If you can
imagine it, you should be able to
build it in a matter of days.
GS: We’re building a very high-level
tool. Each of these extensions takes it
a level higher. You could do all these
things with general methods or func-
tions. But the programming system
itself wouldn’t have had, in advance,
the conceptual model of what you
were trying to do. Our extensions to
the object model are really a concep-
tual model of what we think is pro-
gramming. We are building a system
that will allow programmers in our
organization to achieve the program-
ming they need to do with as little
effort as possible. We are building a
performance support system for
application development.
JT: We’ve identified hundreds of
tasks that people doing a field lin-
guistic project need to accomplish
which could usefully be aided with
software. We can’t afford to invest a
person-year in building each of those
programs.

For example, in the late-1980s we
spent a couple of years building in-
terlinear text analysis tools in C. Re-
cently, using CELLAR, one of our
staff took only two weeks to build a
multiple-pane, multiple-language
browser of several versions of the
Bible, including interlinear annota-
tion and hooks to Greek and Hebrew
lexicons. The interlinear display re-
trieved glosses from these lexicons,
and full lexica entries appeared for
words selected by users.

closing Remarks
The last part of the interview where
Thomson and Simons expressed
their enthusiasm for the potential of

their tool has a slight odor of hype
about it considering they aren’t even
finished building the thing yet. On
the other hand, even if CELLAR isn’t
the project that brings a new level of
productivity to software developers,
someone is going to bring it to us.
And chances are it will share some of
the qualities displayed in CELLAR.

I’m publishing this work in “Prac-
tical Programmer” for several rea-
sons:

Extended objects are a nice exam-
ple of “coloring outside the lines”-
finding creative solutions to difficult
problems. And I think they hold
promise as a useful way to build soft-
ware.

The project is a good example of
leapfrogging. That is, the designers
have chosen not to evolve their cur-
rent generation of tools, shooting
instead for something that will take
full advantage of the increased
power of the computers just now
becoming affordable to their typical
users.

This design illustrates the kind of
system support necessary to build the
kind of cooperative, supportive ap-
plications that I hope will appear in
the near future. We can use the
power of next-generation hardware
by adding new features, but that will
be counter-productive if people can’t
tell which feature to use, or how to
use it. CELLAR’S “task definitions”
and structured “documentation ob-
jects” stored class-by-class are a start
in the right direction. And the prom-
ise of “performance support for
application development” is
quite exciting. t3

Further Reading
Coombs, J.H., Renear, A.H. and DeRose,
S.J. Markup systems and the future of
scholarly text processing. Commun. ACM
30, 1 l(Nov. 1987). 933-947.

Fischer, G. Domain-oriented design envi-
ronments. In Proceedings of the Seventh
Knowledge-based Software Engineering Con-
ference, IEEE Computer Society Press,

Fischer, G., et al. Supporting indirect col-
laborative design with integrated knowl-
edge-based design environments. In
Human-Computer Interaction, Vol. 7, Law-
rence Erlbaum, Hillsdale, NJ, (1992), pp.
281-314.

Fischer, G. and Reeves, B. Beyond intelli-
gent interfaces: Exploring, analyzing, and
creating success models of cooperative
problem solving. J. Appl. Intel 1 (1992),

(1992), pp. 204-213.

31 1-332.

Fischer, G., Lemke, A,, Mastaglio, T. and
Morch, A. I . The role of critiquing in co-
operative problem solving. ACM Trans.
Info. Syst. 9, 2 (Apr. 1991), 123-151.

Gery, G.J. Electronic Performance Support
System. Weingarten Press, Boston, 1991.
(Weingarten has been acquired by Ziff,
and is now part of the Ziff Institute.)

Rettig M. Cooperative software. Commun.
ACM 36, 4 (Apr. 1993), 23-28. (Discusses
the work of Gerhard Fischer and Perfor-
mance Support Systems.)

Rettig, M. A succotash of projections and
insights. Commun. ACM 35, 5 (May 1992),
25-30. (Describes the study of increasing
hardware performance mentioned in this
column.)

Marc Rettig is a member of the technical shff at th
Summer Institute of Linguistics, and a freelance
writer.

24 Aupst 1993iVol.36, No.8 COYYUNICATIOMS OC TMm I C Y

