Implementing the TEI’s Feature-Structure
Markup by Direct Mapping to the Objects
and Attributes of an Object-Oriented
Database System

GARY F. SIMONS

One of the more intriguing parts of the Text Encoding Initiative’s proposals
for text encoding (Sperberg-McQueen and Burnard 1994) has been the
system for feature-structure markup. This is because it has the potential,
although originally developed for the purpose of encoding linguistic analy-
sis, for encoding virtually any kind of information. The real power of the
system lies in an auxiliary file called the Feature System Declaration (FSD)
which encodes the conceptual model (Borgida 1985) that underlies a par-
ticular system of feature-structure markup. SGML can only validate the
syntactic integrity of feature-structure markup and of the FSD. The TEI
community has been waiting for an application that can validate the con-
ceptual integrity of feature structures and FSDs in order to evaluate their
true significance.

This paper describes one such application, but it is not a special-purpose
application. The implementation strategy capitalizes on the corres-
pondence between feature structures (with features) and objects (with at-
tributes) to map feature structures onto the objects of a generalized
object-oriented database system named CELLAR. Conceptual integrity is
achieved by mapping the FSD onto the conceptual modeling component
of the database system. The paper first gives an introduction to feature-
structure markup and to the CELLAR system, and then explains and
demonstrates how the implementation of TEI feature-structure markup
has been achieved. This leads to the conclusion that not only is it possible
to use feature-structure markup to interchange data between database
systems, but also that the FSD formalism and its markup provides a means
for these systems to interchange the specification of a data model.

1. An Overview of TEI Feature-Structure Markup
A feature structure is a set of features paired with values. The conventional

notation uses a single pair of square brackets to enclose all the feature-value
pairs that comprise a feature structure. For example, consider the German

THE TEI’S FEATURE-STRUCTURE MARKUP 221

word kind ‘child’, occurring in the sentence Das Kind war einsam, “The
child was lonely’. The conventional notation for a possible feature structure
analysis of this word is given in Fig. 1. In this example the feature category
has the value ‘noun’, the feature wordForm has the value ‘Kind’, the feature
proper (for, ‘Is it a proper noun?’) has the value ‘-’ (or minus, for, ‘No’),
and the feature agreement holds an embedded feature structure which
groups the features of gender, number, and case. The values for these
represent neuter, singular, and nominative, respectively.

Following the TEI guidelines, this feature structure would be encoded in
SGML as follows:

(£s)
(£ name=category)Xsym value=nounX/f)
(f name=wordForm¥str)Kind(/strX/f)
(f name=proper)Xminus)/f)
(f name=agreement)
(£sXf name=gender)sym value=neutX/£)
(f name=number)sym value=sgX/f)
(f name=case)sym value=nomX/f)
{/£sX/£)
{/£fs)

This example illustrates the following characteristics of feature-structure
markup: :

(1) Feature structures are marked by the (fs) tag.

(2) Individual features are marked by the (£) tag, with the feature name
given as the value of the name attribute.

(3) The value of a feature is encoded as the content of the (£) tag.

(4) A feature value from a closed set is encoded as the value attribute of
the empty tag (sym).

category = noun

wordForm = Kind

proper = -

agreement = gender = neut
number = sg
case = nom

Fig. 1. Conventional Feature Structure Notation for a Word Analysis

222 GARY F. SIMONS

(5) A feature value which is an arbitrary string is encoded as the content
of a (str) tag.

(6) The value of a binary (that is, Boolean) feature is encoded as one of
the empty tags (plus) or (minus).

Further details of the TEI system for feature-structure markup are des-
cribed in Langendoen (1994). The rationale that lies behind the design of
this system of markup is given in Langendoen and Simons (forthcoming).

2. From Linguistic Markup to General Data Markup

Though feature-structure markup was first developed within the TEI as a
means of encoding linguistic analysis of text, in fact, it has a much wider
applicability than just linguistics. Feature structures can provide for the
encoding of information of nearly any sort. This is because they are just
instances of the more general data structure referred to by Donald Knuth as
‘nodes’ (here called feature structures) and ‘fields’ (here called features).
About such structures, Knuth (1968) writes:

.. . the ideas we have encountered are not limited to computer programming alone;
they apply more generally to everyday life. A collection of nodes containing fields,
some of which point to other nodes, appears to be a very good abstract model for
structural relations of all kinds; it shows how we can build up complicated structures
from simple ones, and we have seen that corresponding algorithms for manipulating
the structure can be designed in a natural manner. (p. 462)

A similar sentiment is echoed by Shieber (1986) who is writing specifically
about the use of feature structures in representing grammatical formalisms.
After explaining how six different formal approaches to grammar can be
handled by the single computational model of unification of feature struc-
tures, he says:

In fact, viewed from a computational perspective, it is not surprising that so many
paradigms of linguistic description can be encoded directly with generalized feature/
value structures of this sort. Similar structures have been put forward by various
computer scientists as general mechanisms for knowledge representation (Ait-Kaci
1985) and data types (Cardelli 1984). Thus we have hardly constrained ourselves at
all even though limited to this methodology. (p. 10)

For instance, Ide, Le Maitre, and Veronis (1993) have shown that a lexical
database can be modeled as a construct of feature structures, which can in
turn be implemented as objects in an object-oriented database.

Feature structures with features are essentially equivalent to many famil-
iar schemes of data organization like records with fields, objects with
attributes, frames with slots, property lists with properties, and even
abstract data types with access functions. Thus, (£s) and (£} could just

THE TEI’S FEATURE-STRUCTURE MARKUP 223

as well be used to markup instances of records, objects, frames, property
lists, or abstract data types. In fact, the tag names (fs) and (f) were
deliberately chosen to allow the alternate reading of ‘field structure’ and
‘field’. For instance, the following might be the encoding of a bibliographic
record:

{fs type=book)
(f name=author)Xstr)Goldfarb, Charles(/strX/f)
(£ name=year)nbr value=1990)X/f)
(f name=titleXstr)The SGML Handbook(/str)X/f)
(£ name=publisher)Xstr)Clarendon Press{/strX/f)
(f name=pubPlace)str)oxford{/strX/f)

(/£s)

This example illustrates two further characteristics of feature-structure
markup:

(7) The (fs) element has a type attribute which make it possible to
distinguish different types of records or objects.

(8) A feature value which is a number is encoded as the value attribute
of the empty tag (nbr).

Another important component of TEI feature-structure markup is the
Feature System Declaration, or FSD (Simons 1994). It is a file that is
external to the file containing (fs) markup. It uses SGML markup to
express the well-formedness constraints on feature structures. This includes
declarations of the types of feature structures that are allowed, the features
that are allowed with each type, the types of values that are allowed for each
feature, default values for unspecified features, and co-occurrence con-
straints on feature values. For instance, the above bibliographic record
would be sanctioned by a declaration like the following:

(fsDecl type=book)
(fDecl name=author)

(vRangeXstr rel=ne)X/str)/vRange)X/fDecl)
(fDecl name=year)XvRange}nbrX/vRangeX/ fDhecl)
(fDecl name=title)

(vRange)str rel=ne)/str)/vRangeX/fDecl)
(fDecl name=publisher)

(vRange)str rel=ne)/str)X/vRangeX/fDecl)
(fDecl name=pubPlace)

(vRangeXstr rel=ne)/str)/vRangeX/fDecl)

{/ £sDecl)

(£sDecl) gives a ‘feature-structure declaration’ for the given type of fea-
ture structure, while (fDecl) gives the ‘feature declaration’ for a named
feature. (vRange) gives the range of allowed values. This declaration says

224 GARY F. SIMONS

that the value of an occurrence of the year feature must be an instance of
{nbr), while the other features must store nonempty strings. It also says that
a feature structure of type book is allowed only to have these five features.
For any other feature to occur in an instance of (fs type=book)would be
a conceptual error.

The remainder of this paper describes how a generalized implementation
of the TEI system of feature-structure markup has been achieved by ex-
tending an object-oriented database system to use TEI-style (£ s) tagging as
a possible format for the representation of its objects.

3. An Overview of the CELLAR Object-Oriented Database System

The database system used for this implementation is called CELLAR —for
Computing Environment for Linguistic, Literary, and Anthropological
Research. Developed by the Summer Institute of Linguistics, it is an object-
oriented database system for storing multilingual textual information. A
full discussion of the user requirements that motivated the development of
the system is given in Simons (forthcoming, b). Rettig, Simons, and
Thomson (1993) discuss some of the significant ways in which CELLAR
extends the traditional object model. More information about CELLAR
can be found in the following Worldwide Web page: http.//www.sil.org/
cellar/cellar.html.

To build an application in CELLAR one does not write a program in the
conventional sense of a structure of imperative commands. Rather, one
builds a declarative model of the problem domain. A complete domain
model contains the following four components:

¢ Conceptual model. Declares all the object classes in the problem do-
main and their attributes, including integrity constraints on attributes
that store values and built-in queries on those that compute their
values on-the-fly.

* Visual model. Declares one or more ways in which objects of each class
can be formatted for display to the user.

¢ Encoding model. Declares one or more ways in which objects of each
class can be encoded in plain text files so that users can import data
from external sources or export them.

* Manipulation model. Declares one or more tools which translate the
interactive gestures of the user into direct manipulation of objects in
the knowledge base.

Before looking at the details of how feature-structure markup has been
implemented in this system, we first look at the basic strategy for mapping
concepts of the CELLAR system onto concepts of the TEI feature-
structure system.

THE TEI'S FEATURE-STRUCTURE MARKUP 225

4. The Basic Strategy for Implementing Feature-Structure Markup

One possible strategy for implementing feature-structure markup would be
to define a CELLAR class named FeatureStructure and another named
Feature. Occurrences of (£s) and {f) would be mapped onto instances
of these two classes when a TEI-encoded file was loaded. This would
be trivially easy; that is, it would be easy until we got to the point of
wanting to use the FSD to validate the feature structures that had
been loaded. At that point we would also have to implement CELLAR
classes like FeatureSystemDeclaration which would contain instances
of FeatureStructureDeclaration which would. contain instances of
FeatureDeclaration. (Note that the names of CELLAR classes are capital-
ized and may not contain spaces.) Then we would have to implement the
logic for comparing instances of feature structures and features with their
corresponding declarations to ensure that they were valid, and for comput-
ing default values for unexpressed features. Before long we would realize
that we were reinventing the class definition component that was already
built into our database system!

Our strategy is therefore to build on the analogy that feature structure is
to feature as object is to attribute. The above strategy does not do this;
it models both feature structures and features as objects. To model a feature
as an attribute, it is necessary for the object that corresponds to the feature
structure to have an attribute with the same name as the feature. The
only way an object can get an attribute is that the definition of its class
declares the attribute. Thus, feature-structure type must correspond to
object class, so that every type of feature structure can map onto a different
class of object which appropriately defines the attributes needed for its
features.

This strategy means that before a file with (£s) and (£) markup can be
loaded into the database as objects, the database system must already
know the definitions for the classes that correspond to the feature-structure
types. This is where the Feature System Declaration (FSD) comes in. It
already provides an SGML encoding of the conceptual model for the differ-
ent types of feature structure that are used in the markup. Our strategy is to
first load this knowledge into the CELLAR database. The FSD as a whole
maps onto a CELLAR DomainModel object, while each feature structure
declaration maps onto a ClassDefn object and each feature declaration
maps onto an AttributeDefn object. These mappings are summarized in
Fig. 2.

Once the FSD has been loaded to initialize CELLAR with the needed
class definitions, the feature structures themselves may be loaded. Fig. 3
summarizes the mappings from the elements of TEI feature-structure
markup to the elements of CELLAR. All but the last three entries in that
table should be self explanatory. {sym) is used in feature-structure markup

226 GARY F. SIMONS

TEI Markup Corresponding

Element CELLAR Element

<teiFsd> DomainModel

<fsDecl type=X> ClassDefn (for class X)

<fDecl name=Y> AttributeDefn (for attribute Y)

Fig. 2. Mappings from Elements of TEI FSD to Elements of CELLAR

TEI Markup Corresponding
Element CELLAR Element
<fs type=X> Object of class X
<f name=Y> Attribute named Y
<plus> Boolean true
<minus> Boolean false
<nbr> Integer

<str> String

<sym> Pointer to AuthorityListItem
<uncertain> Missing

<none> None

Fig. 3. Mappings from Elements of TEI (fs) Markup to Elements of CELLAR

THE TEI'S FEATURE-STRUCTURE MARKUP 227

to encode a symbolic value that comes from a closed set; the possible values
are enumerated in the FSD. In CELLAR, a closed set of symbolic values
is modeled as an AuthorityList stored in the class definition. (sym)
thus maps onto a pointer to one of the items stored in such a list.
(uncertain) and (none) map onto two special objects which CELLAR
uses when there is no attribute value: missing signifies that the value is
unknown or uncertain, while none signifies that there is known to be no
value at all.

The next two sections explain the implementation further by giving sam-
ples of the CELLAR source code and by demonstrating it with two ex-
tended examples. In order to illustrate the point that feature-structure
markup can be used for general markup, not just linguistic analysis, the
examples are not from linguisRics. Section 5 uses a critically annotated text
to demonstrate that any objects in the database may be viewed in terms of
feature-structure markup. Section 6 uses a ‘canine medical history’ to dem-
onstrate that arbitrary objects in feature-structure markup can be loaded
into the CELLAR database.

$S. Using Views to Map from Objects in a Database to
Feature-Structure Markup

Section 3 explained that one component of a CELLAR application is the
visual model which declares one or more ways in which objects of each class
can be formatted for display to the user. In an earlier paper (Simons,
forthcoming a), I demonstrated how CELLAR may display a single object
in many different ways using multiple views defined on its class. One of the
examples used in that paper was a CELLAR implementation of a critical
edition of the Second Epistle of Clement. Fig. 4 reproduces one possible
view of the critical text. This example is used in the following subsections to
demonstrate that any object can be displayed in conventional feature-
structure notation or in TEI feature-structure markup.

5.1 Mapping Objects onto Conventional Feature-Structure Notation

Given that an object with attributes is analogous to a feature structure with
features, it should be possible to display the contents of any object in
feature-structure notation. Fig. 5 gives-an example. It is a screen shot of a
CELLAR window displaying the first verse of the critical text in Fig. 4
through a view named fs for ‘feature structure’. The screen is not large
enough to show the entire feature structure for the verse; it goes as far as
the comma in the second line of Fig. 4. The scroll bar can be used to
examine the rest of the feature structure.

In the feature-structure notation of Fig. 5, square brackets enclose a

228 GARY F. SIMONS

File Edit View
All readings of the text

2 Clement

7.1. dote [oﬁv A,L.m.a]d&lqaot LOU A.L.Lb,B
- CSW - CSW

dyavicdpedo euddteg, Ot kv xepoly b [a’tcﬁv A kol
dydv CS.LLbBW

Ot €1 ol $Baptod; dydvag kata mAEoVoLY TOAAOL, AL Ob
rdweg otedavobrtot, | oL A oL TOAAG

g€Luf C.LlbBwW

gL pt ubvov s
xomud coveg kol kaide dyavioduevol. 2. Hueic oby
dyavicdueda, tvo ndyteg otepavabdper. 3. dote

Fig. 4. A View Showing All Readings of a Critical Text

single object. The class of the object is given in italics at the top of the left
bracket. The attributes of an object are named down the left side followed
by an equals sign and the attribute value. When an attribute has a set or a
sequence of values, the values are separated on the same line by commas or
listed in a vertical pile. In this example, the attribute values are either
simple strings, embedded complex objects (displayed as feature structures),
or pointers to complex objects. The latter are displayed as an up arrow
followed by the name of the pointed-to object.

The following is the source code for the view that produced the feature
structure shown in Fig. 5:

enrich Object with
view fs : frame showing (
pile showing (
name of my class using default
with text.italic=true,
lead with lead.height=6,
for all attr in allOwningAttrNames of my class
show (if storesValue (“attr) of self then
row showing (
~“attr using default, ‘=,
pile showing (

THE TEI’S FEATURE-STRUCTURE MARKUP 229

File Edit
: CriticalTextVerse

content = dote
— TextVariation —1

roteSymbol =a

readings = — Reading
text < oy
witnesses = 7A, A, Ab B

Omission .
[witnesss = "C,"S."W]

&Behqol
— TextVanalion -

noteSymbol = b

readings = — Readng
|:tsd = Jov]

witnesses = #A, AL, b, "B
Orrission
[wilmsses = "C,"W]
L

eubdreg,

Fig. 5. A Verse from a Critical Text Displayed as a Feature Structure

evaluate “attr of self using fs)

Y,
for all attr in allReferenceAttrNames of my class
show (if storesValue (*attr) of self then
row showing (
~attr using default, ‘=,
paragraph showing (
evaluate "attr of self using fsPointer)
with target.between=run showing
(glue, %, ")
).
lead with lead.height =12

))
with frame [borderStyle=bracket, above=false,

below=false, extralength=—6]

The view definition begins by declaring that the new view is an enrich-
ment to the Object class. Every class in the CELLAR system is ultimately

230 GARY F. SIMONS

a subclass of Object. Thus, by adding this view to the visual model for
Object, we have added it (by means of object-oriented inheritance) to every
class of object. This means that any object stored in the database can now
be displayed as a feature structure.

Views are defined by specifying how the multiple data elements within
them are to be laid out. CELLAR, following the lead from Donald Knuth’s
(1986) TEX system, builds a display as a structure of boxes within boxes.
there are three basic kinds of grouping boxes: a row places its component
boxes side by side, a pile places its component boxes one over the other,
and a paragraph places its component boxes side by side until reaching
the limit of available space at which point it continues making another
line of boxes below the first and so on. Another kind of box is a frame;
it embeds a single box and displays some kind of frame around it. Still
another kind of box is lead; it generates a blank vertical space of a specified
height.

The fs view is essentially a pile (third line) showing the class name and the
attributes of the objects. This is enclosed in a frame (second line) which
selects ‘bracket’ as its border style and turns off the display of border
segments above and below the enclosed box (last two lines). The result is
square brackets on the left and right; extraLength=—6 reduces the length of
the brackets by six points with the result that the top of the bracket aligns
with the middle of the class name.

The heart of the fs view is the two for all constructs which iterate through
all the attributes, first the owning attributes (which store component objects
in place) and then the reference attributes (which point to related objects
stored elsewhere). Each for all construct consults the definition for the class
to obtain a list of all the attributes of the given type that are possible for this
object. Each possible attribute name is tested in turn. If the object stores a
value for that attribute, then a row is displayed containing the attribute
name, an equals sign, and a view of the attribute value.

For an owning attribute, the values are shown recursively using this fs
view (see the twelfth line). If there are multiple values, they are displayed
in a pile. The recursion of feature structure within feature structure needs to
stop when the value is simply a string, a number, or a Boolean. These are all
subclasses of BasicObject which is in turn a subclass of Object. The defini-
tion of BasicObject is therefore enriched with a definition of the fs view that
overrides the definition on Object; it simply shows the basic object in its
default view. Thus:

enrich BasicObject with
view fs : self using default

But we want Booleans to be displayed as plus and minus rather than in their
default view (which is true or false). Thus, we enrich a Boolean with a yet
deeper overriding definition as follows:

THE TEI’S FEATURE-STRUCTURE MARKUP 231

enrich Boolean with
view fs : if self then ‘+’ else -/

For a reference attribute, the values are shown in a special view named
fsPointer. This, too, is a device for stopping the recursion of feature struc-
ture within feature structure. Using the fs view to display the pointed-to
object as a feature structure would not only repeat the same information
every time it was pointed to, it would also result in an infinite recursion
when attribute values formed a cycle of pointers. Thus, we define the
following view which simply displays the name of the object preceded by an
up arrow:

enrich Object with
view fsPointer :
row showing (**’, glue, my name using default)

The glue causes the boxes on both sides of it to be displayed without an
intervening space.

5.2 Mapping Objects onto TEI Feature-Structure Markup

The f5s view provides the graphic notation that is conventionally used for
displaying feature structures. As discussed above in section 1, the TEI
guidelines define another notation: an SGML-based notation for informa-
tion interchange. In CELLAR terms, this interchange format is just one
more possible view of an object. When we extend the definition of class
Object by adding such a view, any object stored in a CELLAR database (no
matter what its class) can be displayed in TEI feature-structure markup.
The information can be exported in this format by executing a general
menu command that writes the current formatted display to a plain text file.

In Simons (forthcoming, b) I demonstrated how views defined for the
classes of the critical text domain could output the data in the TEI-
conformant markup for critical texts. Here, by using the view called teiFs
(which is defined on Object), the critical text objects can also be output in
TEI feature-structure markup. Fig. 6 is a screen shot showing the same
information as Fig. 5 but in (£s) notation.

The view which generated Fig. 6 is defined as follows:

enrich Object with
view teiFs : pile showing (

row showing (‘{fs type=’, glue,
name of my class using default,
glue, Y)'),

for all attr in allOwningAttrNames of my class

show (if storesValue (*attr) of self then
pretty-print showing (
row showing ({f name=’, glue,

232 GARY F. SIMONS

File Edit
«fs type=CriticalTextVerse>
<f name=content-
<stdoTec/st>
«<fs type=TextVariatiore
<f name=noteSymbob» <stac/st <A
<f name=readings>
«fs type=Reading>
<f name=text> <st>oDucsstr> <A
<f name=witnesses> <sym value=A> <sym valuecls <sym value=Lie <symvalue=B> </t
<fs>
<fs type=Omissiorn>
<f name=witnesses> <sym value=C> <sym value=S> <sym value=Ws </>
<fs>
<>
<fs>
<strdSeAdolcsstrs
«fs type=TextVariation
«<f name=noteSymbol> <str>be/str> </
<f name=readings>
<fs type=Reading>
<f namectext> <str>poUcists <A
«<f name=witnesses> <sym value=A> <symvalue=L> <sym value=Lb> <symvaiue=B> </
<As> 7

Fig. 6. Same Information as Fig. 5 Displayed in TEI Feature-Structure Markup

“attr using default, glue, ‘)’),
evaluate "attr of self using teiFs,
EY)),
for all attr in allReferenceAttrNames of my class
show (if storesValue(*attr) of self then
pretty-print showing (
row showing (Yf name=’, glue,
~attr using default, glue, ')'),
evaluate “attr of self using teiSym,
W/E)),
W/ £s)")
with pile[leftIndent=18, firstlLineIndent=-18,
lastLineIndent=~18]

This view definition is similar to the one for fs. It introduces just one new
element of the programming language, namely, the pretty-print construct. A
pretty-print box formats itself like a row if all of its contents will fit on
one line; otherwise, it formats like a pile. For instance, in the first (fs
type=TextVariation)of Fig. 6, the noteSymbol feature is formatted as
a row while the readings feature is formatted as a pile. The indentation
properties declared in the last two lines are what cause the indentation to

THE TEI'S FEATURE-STRUCTURE MARKUP 233

track the level of nesting. These declarations say that each pile (including
those generated by pretty-prints) is to indent its content by 18 points, with
the exception of the first and last lines (for the start and end tags, respec-
tively) which are back at the original left edge of the pile.

The views for the BasicObject subclasses are straightforward, simply
gluing the correct markup before and after the default view of the object.

enrich String with
view teiFs : row showing (
(str)’, glue, self using default, glue, “{/str)’)

enrich Integer with
view teiFs : row showing (
Y(nbr value=’, glue, self using default, glue,)’)

enrich Boolean with
view teiFs : if self then Yplus)’ else Yminus)’

The values of reference attributes are displayed with a view named teiSym
which treats the name of the pointed-to object as a symbol from a closed
list:
enrich Object with
view teiSym : row showing (
(sym value=’, glue, my name using default,glue, ‘)’)

5.3 Mapping Class Definitions onto a TEI Feature System Declaration

A file encoded in TEI feature-structure markup is not complete for inter-
change unless it has an accompanying Feature System Declaration (FSD) to
document what the feature structure types and their features represent and
to specify constraints on well-formedness. Such information is already in-
side the class definitions of a CELLAR database. In the same way that
we can use view definitions to map arbitrary objects onto TEI (fs) markup,
we can use view definitions to map the class definitions of those objects
onto a TEI FSD. Fig. 7 is an example; it shows the first screen of the
automatically generated FSD for the objects displayed as TEI feature struc-
tures in Fig. 6.

A view named teiFsd was used to generate the display in Fig. 7. The
correspondence between CELLAR elements and FSD elements is given
above in Fig. 2. Space does not permit inclusion of the source code for these
view definitions. Suffice it to say that the teiFsd view of class DomainModel
generates a (teiFsd) tag, the (teiHeader), all its ClassDefns in their
teiFsd view, and the (/teiFsd) end tag. The teiFsd view of class ClassDefn
generates a comment header line, an (£sDecl) tag, the (fsDescr), all its
AttributeDefns in their teiFsd view, and the (/ fsDecl) end tag. The teiFsd
view of class AttributeDefn generates an (fDecl) tag, the (fDescr), the
(vRange), and the (/ £Decl) end tag.

234 GARY F. SIMONS

File Edit

<title=A TE| Feature System Declaration for the CELLAR domain modet named
CriticalTest<Aitle>
<resp» <rolexdeveloped by<Aole> <name>Gary F. Simons</name> <Aesp>
<AitleStrrt>
«<HileDescr>
«<AeiHeader>
gl SETOEEESSberat et TextVariation ->
<fsDec| type=TextVariation basedOn=Object>
<fsDescr~Stores a set of alternate readings for a particular span of text<#sDescr>
«<fDecl name=noteSymbol>
<fDescr>The symbol used i link lemma in text with notes in apparatus<ADescr>
<vRange> <str rel=nex</str> <ARange>
<ADech>
«<fDecl name=readings ong=list>
<fDescr>The alternate readings of this span of text<ADescr>
<vRanges <fs type=Reading»<As» <ARange>

¢ Reading
<fsDecl type=Reading basedOn=Cbject-

Fig. 7. The Domain Model for CriticalText Displayed as a TEI Feature System
Declaration

6. Using Parsers to Load Objects into a Database from
Feature-Structure Markup

Section 3 explained that another component of a CELLAR application is
the encoding model which declares one or more ways in which objects of
each class can be encoded in plain text files so that users can import
data from external sources. The aim of this section is to demonstrate how a
file of data in TEI feature-structure markup can be imported into a CEL-
LAR database. To demonstrate this I use the ‘canine medical history’
developed by Langendoen (1994, 512-13) as an illustrative example in the
TEI guidelines. Fig. 8 gives a listing of the input file; it was extracted without
change from a downloaded version of the TEI guidelines. It is an encoding
of the key information in a text from the British National Corpus named
‘Memoirs of a Dog Shrink’ which is about a collie who had a phobia for

lights.

Fig. 8. Feature-Structure Markup of a Canine Medical History (follows)

<fs type='canine medical history'id=j37>
<f name=name id=j37pn><str>Jessie</str></f>
<f name=called.by org=set id=j37pc>
<str>Jessie</str>
<str>Jess</str>
</f>
<f name=breed id=j37b><sym value=collie>
<f name=owner id=j370>
<fs type='owner description'>
<f name=name><uncertain></f>
<f name=address id=j37or><str>Surrey</str></f>
</fs>
<f name=illness org=list id=3j37i>
<fs type='case history' id=j37il>
<f name=name.of.specialist id=j37ilsn>
<fs type='name structure's>
<f name=last.name><str>Neville</str></f>
<f name=first.name><str>Peter</str></f>
</fs>
<f name=title.of.specialist><uncertain>
<f name=case.number id=j37iln><nbr value=72></f>
<f name=age.at.incidence><uncertain></f>
<f name=date.of.incidence><uncertain>
<f name=baseline.condition org=set id=j37ilb>
<sym value=lazy>
<sym value=friendly>
<sym value=indoor>
</f>
<f name=symptoms id=3j37ils>
<fs type=‘symptom structure's>
<f name=behaviors org=set id=j37ilsb>
<sym value=agitated>
<sym value=destructive>
<sym value=unfriendly>
</f>
<f name=particulars id=j37ilsp>
<str>ran off, then returned and
destroyed every lamp in the house</str></f>
</fs>
</f>
<f name=diagnosis id=j37ild>
<fs type='diagnosis structure'>
<f name=date.of.diagnosis><uncertain>
<f name=disease id=j37ildd>
<str>light bulb phobia</str></f>
<f name=presumed.cause id=j37ildc>
<str>explosion of light bulb over patient's head</str>
</f>
</fs>
</f>
<f name=treatment id=j37ilt>
<fs type='treatment history'>
<f name=medicine><none></f>
<f name=regime id=j37iltr>«str>positive reinforcement</str></f>
<f name=particulars id=j37iltp>
<str>systematically decreased distance between
feeding bowl and table lamp</str></f>
<f name=duration.of.treatment id=j37iltd>
<msr unit=week value=2>
</f>
</fs>
</f>
<f name=result id=j37ilr>
<str>return to baseline condition</str>
</f>
</fs>
</f>
</fs>

236 GARY F. SIMONS
6.1 Loading Objects from TEI Feature-Structure Markup

An encoding model consists of a collection of parser definitions. Each
parser is defined on a particular class and specifies how input text is con-
verted to an object of that class. In order to convert feature-structure
markup into objects in the database, we add a set of parsers named teiFs to
the system. Again, this is done by extending the definition of class Object so
that all classes in the system inherit the new behavior. As a result, any kind
of object (no matter what its class) can be loaded into a CELLAR database
by reading in a text file that uses TEI feature-structure markup.
The teiFs parser for class Object is defined as follows:

enrich Object with
parser teiFs —
{ (peek Yfs’ Object.teiFs2)
(peek ‘{minus)’ Boolean.teiFs)
(peek Yplus)’ Boolean.teiFs)

(peek ‘(nbr’ Integer.teiFs)

(peek ‘(str)’ String.teiFs)

(peek “(sym’ Object.teiSym)

(peek ‘(msr’ String.teiMsr)

(Y(none)’ do(1lit. none))

(Yuncertain)’ do(lit. missing))
} ?blank

Curly braces enclose a set of alternative patterns, one of which should
succeed. In this case, the parser is peeking at the next tag in the input file to
determine which parser for which class of objects to invoke. In the case of
(none) and {(uncertain), no further parser is needed; the response is to
return a literal none value or missing value, respectively. The final ?blank
optionally matches a span of blank (space, tab, or newline) characters.

The parsers for the BasicObjects are straightforward. The Boolean
parser returns a copy of the Boolean values true or false depending on
whether it finds {(plus) or (minus) in the file.

enrich Boolean with
parser teiFs —
{ (Yplus)’ do(copy of true))
{Y{minus)’ do{copy of false))}

The Integer parser sets the basic value of a new integer to the value
returned by calling the built-in parser of integers named default. The con-
struct (... =...)is the syntax for setting an attribute of the object being
constructed.

enrich Integer with
parser teiFs —
build Integer matching (

THE TEI’S FEATURE-STRUCTURE MARKUP 237

Y(nbr value=’
{pasicValue = Integer.default) ')’)

The String parser works in two stages. It first matches all the content
between the start and end tags and assigns it to a variable. It then submits
that value to a String parser called reduceBlanks and uses the result of that
for the value of the returned String. The latter parser converts spans of
blanks to a single space, thus dealing with the extra spaces put in the input
for pretty-printing purposes (see Fig. 8).

enrich String with
parser teiFs —

var string

build String matching (
Ystr)’
string :=String.upTo (/') (/' ?‘str’ Yy
(basicValue= do(

parse “stringusing String. reduceBlanks))

)

The parser that does most of the work is Object. teiFs2. This is the parser
that converts an (fs) construct into an object:

enrich Object with
parser teiFs2 —
var className, attr,' ignore
build Action (!Action (“className)) matching (
\(fs type=’ className:=
{ string.cellarName String.teiFsName} ?blank
2 (‘id=' ignore:=String.upToAny (})’) ?blank)
3 ?blank ;
* (Y{f name=' attr:=String.teiFName ?blank
* ({ ‘org=' ‘id='" } ignore:=String.upToAny(*)
?blank)
‘Y ?blank
(Action (“attr)=tObject.teiFs)
{ ({/£) 2?blank) (peek Yf)})
W/£s))

The fourth line is performed after the entire pattern has been matched; it
builds an object of the class named in the className variable. The pair of
alternatives in the sixth line means that the name of the class (that is, the
value of the SGML type attribute) may already be a valid CELLAR name
or should be converted to one by invoking the parser String.teiFsName. The
latter removes spaces from within a name and capitalizes the first letters of
the words. The parser String.teiFName is similarly used for the feature
names to remove internal periods and capitalize the first letters of the

238 GARY F. SIMONS

words. The asterisk at the beginning of the line which matches ‘(f name="
means that the pattern within that set of parentheses is matched as many
times as it can, in other words, once for each feature that is encoded. The
org and id SGML attributes are simply ignored; org can be ignored because
the CELLAR attribute definition already knows whether or not it is valid
for the attribute to store more than one value. The third-to-last line is where
the feature values are actually set; the attribute with the most recently
matched name is set to the values returned by matching the Object.teiFs
parser (the plus sign means that the parser must match one or more times).
The alternation in the second-to-last line allows for the possibility that the
end tag for the feature has been omitted.

Given that the CELLAR database has a valid class definition for each of
the feature-structure types in the input file, the teiFs parser converts the
TEI-encoded file into objects in the database. Fig. 9 shows the result
of parsing the input file of Fig. 8. It is the fs view (as defined in section 5.1)
of the resulting CanineMedicalHistory object. Once the teiFs parser
has been used to import the encoded data into the CELLAR database, all
the mechanisms of CELLAR’s programming language are available to
build views and interactive tools that are specific to manipulating that kind
of data.

6.2 Loading Class Definitions from a TEI Feature System Declaration

As just stated, feature-structure markup can be converted into objects only
if the CELLAR system already has definitions for the classes that corre-
spond to the feature-structure types. The Feature System Declaration
(FSD) is the component of TEI markup that documents what the feature
structure types are and specifies well-formedness constraints in terms of
allowed features and feature values. Fig. 10 is a listing of the FSD which was
written to document the markup of the canine medical history shown in Fig.
8. The (fsDecl)s for CanineMedicalHistory and OwnerDescription are
given in full; those for the five other feature-structure types have been
omitted to save space.

A parser named teiFsd was used to convert the file listed in Fig. 10 into a
CELLAR domain model containing the class definitions corresponding to
all the feature-structure types. Space does not permit inclusion of the source
code for the parser definitions. In short, the teiFsd parser converts the
(teiFsd) to a DomainModel, each {fsDecl) into a ClassDefn, and each
(fDecl) into an AttributeDefn. The only change I made to the canine
medical history FSD (that was originally encoded in 1993) was to place the
feature declarations that use enumerated lists last and precede them
with the SGML comment (! —Reference attributes —>.In this way
the teiFsd parser for ClassDefn easily knows when to create an
OwningAttrDefn versus when to create a Reference AttrDefn. In the latter

...

THE TEI’S FEATURE-STRUCTURE MARKUP

| File Edit

CanineMedicalHislory
calledBy = Jessie

Jess
illness = CaseHislory
caseNumber

diagrosis =

symploms =

name = Jessie

owner = - OwnerDescrption
[address = Surrey]

breed = “collie

=72

nameOfSpecialist = — MameStruciure

result = return to baseline condition

= T}eammHa‘sm

L
baselineCondition = Mazy, ~riendly, #indoor

DiagnosisStnefure

disease = light bulb phobia

presumediCause = explosion of light bulb
over.patient’s head

firstName = Peter
lastName = Neville

SymplomSirciure

pamc ulars = ranoff, then returned and
destroyed every lamp in
the house

behaviors = “agitated, Adestructive,
Aunfriendly

durationOfTreatment = 2 week

medicine = none

particulars = systematically decreased
distanc e between feeding
bow! and table lamp

regime = positive reinforcement

Fig. 9. Canine Medical History Displayed in Conventional Feature-Structure

Notation

<teiFsd>
<teiHeader>
<fileDesc>
<titleStmt>
<title>An FSD for the "Canine medical history" example in the
Feature Structures chapter of TEI P3, pp. 512-513</title>
<resp><role>encoded by</role><name>Gary F. Simons</name></resp>
</titleStmt>
<publicationStmt>This FSD was encoded August 14, 1993 for the
purpose of serving as a nonlinguistic example of the use of FSDs.
It is a hypothetical example based on the sample case history encoded
in pages 512-513 of the TEI Guidelines.</publicationStmt>
</fileDesc>
</teiHeader>
<!__ v g ok ok dod ok ke ok ok ok canine Medlcal History hhkkhkhhkhkdkhhkhhhdd —_——
<fsDecl type='Canine medical history's>
<fsDescr>Used to encode the medical history of a dog; see
example on pages 512-513 of TEI P3.</fsDescr>
<fDecl name=name>
<fDescr>The given name of the dog</fDescr>
<VRange><str rel=ne></str></vRange>
</fDecl>
<fDecl name=called.by org=set>
<fDescr>Names by which the dog is called</fDescr>
<vRange><str rel=ne></str></vRange>
</ fDecl>
<fDecl name=owner>
<fDescr>Identification of the dog's owner</fDescr>
<vRange><fs type='owner description'></fs></vRanges>
</fDecl>
<fDecl name=illness org=list>
<fDescr>The history of illnesses for which this dog has
been diagnosed and treated</fDescr>
<vRange><fs type='case history'></fs></vRange>
</fDecl>
<!{-- Reference attributes -->
<fDecl name=breed>
<fDescr>Breed of dog (selected from authority list)</fDescr>
<vRange>
<vAlt><sym value='cocker spaniel'’><sym value=collie>
<sym value=dachsund><sym value='english setter'>
<sym value='german shepherd’'s><sym value='great dane's>
<!--Add symbols to extend the authority list-->

</vAlt></vRange>
</fDecl>
</fsDecl>
<!_- 2RSSR EZ XX RN owner Description Khhkhkrhkhhhrhhddd -

<fsDecl type='owner description'>
<fsDescr>Encodes information about the person who owns adog.</fsDescr>
<fDecl name=name>
<fDescr>Name of the dog's owner</fDescr>
<vRange><str rel=ne></str></vRange></fDecl>
<fDecl name=address>
<fDescr>Address of the dog's owner</fDescr>
<VRange><str rel=ne></str></vRange></fDecl>

</ fsDecl>

<!-- The <fsDecl>s for the following are omitted to save space: --»>
<!_- KA RNk RNEhhhh Case History LR AR A SRR 222 R R N3 -——

<!__ TRk Wk kok ko kW ko Name Structure (22X R R AR EESR RN X2 _——

<!__ khkkdkhkhkrhrhkdddthdi Synlptom Structure A S A X KRR RS ES] -

<!__ LES A RS 2R R RE R 2] Dlagnosis structure Wl ko ded koo kR -2

<!__ IE 222 E SRR RS X Treatment History (A2 R R R XSS LSRR] —-——>
</teiFsd>

Fig. 10. Feature System Declaration for a Canine Medical History: Tweedie, Singh
& Holmes

THE TEI'S FEATURE-STRUCTURE MARKUP 241

case, the parser reads the enumerated list of symbols in the (vAlt) and
creates an AuthorityList out of them.

7. Conclusion

The TEI guidelines propose feature-structure markup with the suggestion
that it can be used to encode virtually any text-oriented information or
analysis of such information. An obstacle to the use of this notation has
been the absence of software for processing it.

This paper has demonstrated that one approach to solving this problem is
to map the feature structures and features of a TEI-encoded file onto the
objects and attributes of an object-oriented database. The CELLAR sys-
tem, with its user-definable views for export formatting and parsers for
import processing, has proven able to do this task. By adding a teiFs view to
the definition of class Object, any object already stored in the database can
be exported in feature-structure markup; by adding a teiFs parser, an object
of any class can be created by importing it from a marked up file.

Perhaps even more significant than this is the way the elements of a TEI
Feature System Declaration have been mapped onto CELLAR class
definitions. The implementation is achieved by adding a teiFsd view and
parser to the definition of class ClassDefn (which defines the behavior of
all class definitions in the system). As a result, the definition of any class
that has been implemented in CELLAR can be displayed and exported as
a TEI FSD. (Note, however, that any information for which there is no
FSD equivalent must necessarily be lost.) Conversely, a TEI FSD can
be loaded by CELLAR to create the class definition that is needed for
loading TEI feature structures of a particular type. The net result is that
the TEI FSD formalism becomes an alternate programming language
syntax for expressing conceptual models in CELLAR. More generally
this demonstrates the potential of the TEI’s FSD formalism for serving as a
lingua franca among database systems for the interchange of basic data
models.

References

Ait-Kaci, H. (1985), ‘A New Model of Computation Based on a Calculus of Type
Subsumption’, Doctoral dissertation (University of Pennsylvania, Philadelphia,
PA).

Borgida, A. (1985), ‘Features of Languages for the Development of Information
Systems at the Conceptual Level’, IEEE Software 2(1): 63-72.

Cardelli, L. (1984), A Semantics of Multiple Inheritance, Technical Report, Bell
Laboratories (Murray Hill, N.J.).

Ide, N., Le Maitre, J., and Veronis, J. (1993), ‘Outline of a Model for Lexical
Databases’, Information Processing and Management 29(2): 159-86.

242 GARY F. SIMONS

ISO (1986), Information Processing— Text and Office Systems—Standard General-
ized Markup Language (SGML), ISO 8879-1986 (Geneva, International Organi-
zation for Standardization).

Knuth, D. E. (1968), The Art of Computer Programming, vol. I: Fundamental
Algorithms (Reading, MA).

Knuth, D. E. (1986), The TzXbook, Volume A of Computers and Typesetting
(Reading, MA).

Langendoen, D. T. (1994), ‘Feature Structures’, in C. M. Sperberg-McQueen and L.
Burnard, 1: 475-519.

Langendoen, D. T, and Simons, G. F. (forthcoming), ‘A Rationale for the TEI
Recommendations for Feature-Structure Markup’. To appear in Computers and
the Humanities special issue on the Text Encoding Initiative.

Rettig, M., Simons, G., and Thomson, J. (1993), ‘Extended Objects’, Communica-
tions of the ACM 36(8): 19-24.

Shieber, S. (1986), An Introduction to Unification-Based Approaches to Grammar,
Center for the Study of Language and Information, Lecture Notes 4 (Stanford,
CA).

Simons, G. F. (1994), ‘Feature System Declaration’, in C. M. Sperberg-McQueen
and L. Burnard, 2: 701-13.

Simons, G. F. (forthcoming), ~ ‘The Nature of Linguistic Data and the Require-
ments of a Computing Environment for Linguistic Research’. To appear in J.
Lawler and H. Dry (eds.), Computing and the Ordinary Working Linguist (New
York).

Sperberg-McQueen, C. M., and Burnard, L. (1994). Guidelines for the Encoding and
Interchange of Machine-readable Texts (Chicago and Oxford).

