
A P-ECT PLANNING AND
DEVELOPMENT PROCESS

FOR SMALL TEAMS

Marc Rettig and Gary Simons --
A good manager is a remover of obstacles and a
provider of resources.
his phrase circulates through management
circles in various versions. It normally conjures
up visions of managers resolving crises during
projects, providing people and equipment as
they are needed. But the work of removing
obstacles and providing resources should start
before a project even begins. A good manager
can remove many obstacles before they appear
by providing one of the most fundamental
resources any project can have: a clearly defined
plan and process definition. The plan tells team
members what needs to be done and when,
while the process definition tells them how it
should be done and how to know when it has
been done with adequate quality. This leads to
another aphorism: “A good manager makes
sure that all team members know what they are
supposed to do, and how to tell whether they
have done a good job.’’

With a good process definition in hand, the
project manager becomes a shepherd or facilitator, seeing to it that the team has
what it needs and ensuring that the project is progressing as it should. This article
documents a process for software development designed and successfully used
by the Academic Computing Department of the Summer Institute of Linguistics
(SIL) in Dallas, Texas. Standing at the start of a complex five-year development
project, the department realized that seat-of-the-pants management techniques
would not be successful. We decided to organize ourselves as a “structured open
team,” and to adopt some of the techniques promoted by the total quality
movement.

Organization
The goal of this article is to describe our process in enough detail that readers
can borrow from it to define or improve their own development process. The
process embodies a few new ideas, a few twists on old ideas, and many time-
honored and often-repeated ideas. In the interest of completeness we have
described everything, even the old notions, recognizing that many project
managers have never had any management training.

The bulk of this article describes the development process outlined in the
sidebar, addressing both the ‘hard’ technical issues and the ‘soft’ social aspects
of our work. Limits in space and the reader’s tolerance for tedium prevent us
from elaborating on every point. Since the headings in the article correspond
to points in the outline, it should be easy to keep track of the discussion’s con-
text. The process description is preceded by background on our project, to give
context, and-by a description of our team organization.’

This article presents a snapshot of an evolving method as it is used at SIL.
This is not a formal method, and it is not guaranteed to be complete and
coherent. Readers should feel free to borrow and adjust wherever they see fit
without offending the methodology gods.

The Academic Computing Depart-
ment at SIL is creating an object-
oriented software development
environment called CELLAR [15],
which facilitates construction of
applications that deal with large collec-
tions of structured multilingual infor-
mation. This is R&D work “research”
in that we do not always know how to
accomplish our goals, “development”
in that we are committed to delivering
quality software to our user
community.

Now that CELLAR is nearing com-
pletion, we are using it to prototype a
“Performance Shell’’-a tool for
building performance support systems
[11, 141. Other departments in our
organization are forming teams to
build CELLAR applications. These
efforts expanded our focus to include
applications development in addition
to systems development, motivating
many revisions in our development
process. This article describes the
result: a process designed to work for
many kinds of projects and many kinds
of people-so far we are pleased with
its success.

Project Teams and Guidance
Teams
Our current arrangement of a project
team, team leader, and guidance team
follows the app,roach suggested in Peter
Scholtes’s Zam Handbook [16]. Every
project is carried out by a project team
under the watchful eye and helpful
hands of a guidance team

Thxpuidance team Each project team
is initially formed by, and then remains
responsible to, a guidance team. The
guidance team is made up of at least
three managers who must sign off on
the results produced by the project
team, and who have the clout to
remove obstacles and provide
resources at the corporate level. They
do not manage the project team-that
is the role of the team leader. Rather,

0 0 1 1 Y m U ~ or m Icy October 1993/Vo1.36. No.10 45

P r o i e r t O r g a m i x a l i o n a n d M a n a g e m e m 8 I@
they oversee the work, remove obsta-
cles, and serve as an interface between
the project team and the result of the
organization. Thanks to the guidance
team, the project team can forget
about corporate politics and concen-
trate on their work.

The guidance team has the follow-
ing responsibilities:

Identify project goals I

Prepare a mission statement (by
writing a first draft of the project
brief-see the following)

Select and assign the project team
members

Determine other resources needed
by the project team, and provide
them

Monitor the progress of the project
team

“Sign off” on the results produced
by the project team

Provide accountability to the rest
of the organization for the work of
the project team

The project team. This team is made
up of the people who will do the
work. Our project teams were origi-
nally inspired by Larry Constantine’s
notion of “structured open teams” [4,
121-groups of at least three people
acting as peers and making decisions
by consensus. As the team matured
and people adopted roles befitting
their personal strengths, we evolved
aspects of Fred Brooks’s “surgical
team” organization [2]. That is, the
lead designer spent less time coding
and more time designing, as other
people learned enough to take over
the coding burden and support the
designer in building his vision.

The Project-level Process
Establish the Project
As the outline in the “PADRE Project
Planning and Development Process”
sidebar shows, “establishing” a proj-
ect means forming teams and writing
clear goals. The latter takes the form
of a “project brief,” a short document
that sets forth the charter for the

lPrlnclpks
Where the article focuses on process, these
commants serve to extract the principles that
underlie the recommendations in the accom-
panying text. Some principles appear be-
cause they motivated features of the process.
Others appear because they describe impor-
tant lessons we haw learned along the way.

project team. Of course, it may be
necessary to write separate require-
ments documents that lead to and
support the project brief.

Requirements specification. In our
current projects, and hence in the
process described in this article, we
have chosen to evolve requirements
rather than attempt to complete a
formal requirements statement at the
start. We believe that requirements
for large, complex systems are best
evolved through an iterative process.
Eric Raymond explains this in The
New HacRerS Dictionary:

creationism n. The (false) belief that
large, innovative designs can be com-
pletely specified in advance and then
painlessly magicked out of the void by
the normal efforts of a team of nor-
mally talented programmers. In fact,
experience has shown repeatedly that
good designs arise only from evolution-
ary, exploratory interaction between
one (or at most a handful of) exception-
ally able designer(s) and an active user
population-and that the first try at a
big new idea is always wrong. Unfortu-
nately, because these truths don’t fit the
planning models beloved of manage-
ment, they are generally ignored.

In our project, end users motivate
the effort, but they have never seen
anything comparable to what we are
building. Until we had a working
prototype-the only specification
that communicates adequately-it
was difficult for us to teach the lan-
guage of our innovation to others
and begin incorporating their ideas
into subsequent iterations of the
specification.2 Rapid prototyping
tools let us get user input early and
often, “growing” our software in a
series of stages. Each stage produces
a working product, each makes use
of the one before.

The decision whether or not to
work from careful specifications is a
strategic decision that should be
made early in the project. And it
should be made consciously. Many
projects write (or fail to write) speci-
fications simply out of the habit of
following the same creationist (or
evolutionary) management model
for every project, regardless of its
nature.

When a system seems too complex to spec-
ify, build a rapid prototype [3].

46 October 1993/Vo1.36, No.10 COYYUNICATIONS w ~ l l ICY

Project brief. So, projects in our
organization typically start with an
informal but detailed statement of
known requirements, summarized in
a project brief.

Project titk. The name the entire
organization will use to describe the
project.
Purpose. A concise statement of the
specific goals of the project. This
serves as a one- or two-paragraph
requirements statement for the proj-
ect stated in measurable terms. The
purpose statement may refer to a
separate user requirements docu-
ment for a fuller description.
Stages. A numbered list of the devel-
opment stages the project will go
through on its way to completion.
The stage descriptions should in-
clude a schedule of completion dates.
A detailed discussion of stages ap-
pears later in this article.
Team. The people assigned to the
project team, with role assignments.

Form a project team. The first sev-
eral weeks of our team’s existence
were dedicated to planning and pro-
cess de~igning.~ The project leader
(Gary Simons) was assisted in this
work by Dave O’Bar, a successful
total quality manager who had re-
cently come to SIL from the aero-
space industry. This pairing of an
experienced software engineer with
an experienced manager was a good
combination for facing the task of
figuring out how to manage a large
project. They drafted a process, then
put it through a series of refine-
ments: the team made suggestions on
paper, we had meetings to discuss
changes, and finally, agreed we could
all work together in the manner de-
scribed by the proces~ .~ In fact,
everyone seemed excited to see how
it would work.

The results of this early work in-
cluded much more than the kind of
description included in this article.

The brief has four parts:

Teams should create standard development
processes for themselves, and describe them
in detail. This is part of what it means to form
a team.

~~

4inciude the entire team in creating the devei-
opment process, thus building a communei
sense of ownership for both the project end
the process.

We worked together to produce de-
tailed standards for coding, testing,
and configuration management; we
agreed on meeting conventions, cre-
ated metrics gathering forms and
time sheets; and we set up a group
archive with an electronic index.
This collection of forms, procedures,
conventions, and unwritten guide-
lines developed over the next few
months (and which are constantly
evolving to accommodate new people
and new situations)-is the full de-
velopment process, of which this arti-
cle describes only an essential shell.5
These standards relate to the adage
in our introduction: they tell people
how to work, and they define in spec-
ifics the meaning of ‘quality.’

Roles in the project team. The partic-
ular roles filled by project team
members vary according to the proj-
ect. A systems development project
might involve a lead designer and
two programmers. We have begun to
involve people from user depart-
ments in application teams, and are
having encouraging results with as-
signing explicit roles to members of
these “mixed teams.” At a minimum,

slf your prowss isn’t changing, it It isn’t a
subject ol dlscusrion and debate, It probably
isn’t baing used. A good pracess is organlc,
embodied In the habits and conversations ol
the team. Like any behavior, you can docu-
ment It, you can do your bast to guide Its de
velopment, but attempts to enforce It by strid
martdate am mom likely to encourage mbi-
lion than participation.

an application project team consists
of three people uniquely filling the
following three roles:

ZmpZementer. A programmer who
writes the program code that imple-
ments the project
Domain specialist. A specialist in the
application domain, who need not
know much at all about program-
ming, who serves to specify require-
ments and review results
TechnicaZ reviewer. A programmer
other than the implementer who
serves to review technical aspects of
the implementation whenever
needed-a source of design ideas,
consultation, and peer review

A large project team of five to seven
members could have two or three
people designated for each role.
Even though a single person might
have the skills to fill more than one of
the preceding roles, this person
should be identified as filling a single
role on the team6

We assume the three core team
members are resident in the same
location and are available to meet
together once a week. Many teams,
however, will be well served by in-
cluding members who are at differ-
ent locations and not available to par-
ticipate in regular team meetings.
These members are designated as
filling the role of

ConsuZtant. A specialist in the appli-
cation domain who participates in
the team from a distance, or inter-
mittently at the request of the core
team.

Unlike the potentially numerous
reviewers who will evaluate the work
of the team at the end of each stage
(described later), a consultant is a full
member of the team who is kept in-
formed of the activity during each
stage, and has the opportunity to
review the team’s work as it is devel-
oping. It is up to each team to work
out how they will incorporate con-
sultants into their work.

Social roles. The roles just de-
scribed are all technical roles. Con-
stantine [4, 81 and many others de-
scribe another set of roles necessary

8Expllcltly designate the role ol each member
of the bun, and make aura that each team
has a person designated for each key rob.

48 October 1993/Vo1.36, No.10 coy~u)(~~nowm w ~ n e m

for effective communication in a
project team, noting that the social
interaction within a team is a com-
monly overlooked cause of trouble
for a project. Early in our team’s for-
mation, we explicitly assigned roles
such as facilitator, critic, and scribe at
the beginning of each meeting, rotat-
ing the assignments among the team
members [121.’ With time, these
roles either become habits or do not,
and role assignments now tend to be
less formal: “I see Larry is taking
notes-will you send us all a copy?”
Still, we believe attention to interper-
sonal communication was an impor-
tant ingredient in the early success of
our team.

The team leader. Each project team
has one member designated as the
team leader. This could be one of the
persons already slotted for one of the
three positions previously men-
tioned, it could also be someone ap-
pointed solely to fill the position of
leader. The role of team leader is not
synonymous with guiding light or
chief decision maker; a consensus
approach to decision making should
be followed within the teams [5-7,
161. Rather, being team leader means
taking on the following responsibili-
ties:

Facilitator. Schedule and lead team
meetings, or nominate another team
member to do so.
Archivist. Take minutes of team
meetings and maintain an archive of
project documents, or nominate an-
other team member to do so [8, 121.
Manager. Maintain a chart of prog-
ress toward project milestones to give
the project team feedback on prog-
ress toward goals, to assist the project
team in planning its activities, and to
provide accountability to the guid-
ance team and others outside the
project team.
Contact. Serve as the contact point
between the project team and the
guidance team.

The day-to-day details of a project
leader’s life (and that of all the team
members) will vary depending on
individual strengths and personali-
ties. The roles we have described are

‘Build effective communication into your pro-
w - t r a i n team membewa In team dynamics
and effective meeting techniques.

essential. Their assignment to a par-
ticular person on the team may vary
(with the exception of the “contact”
role).
Plan the Project. Planning right-
taking time to do a thorough job be-
fore jumping into the work-qakes
the rest of project management far
more effective and pleasant. There-
fore, the rest of this article is almost
entirely about planning, saying very
little about the daily life and respon-
sibilities of a project manager.

Divide the project into stages. A proj-
ect is usually too big to plan in detail
all at once, so planning progresses
through a series of top-down steps.
Complex projects may involve sev-
eral semiautonomous components,
which may be planned indepen-
dently. If the work on any compo-
nent is expected to take a long time,
it should be divided into stages. Each
stage lasts four to six months (adjust
to suit the situation), and each pro-
duces a working subset of the proj-
ect’s results.

A stage is defined in terms of the
resulting behavior and appearance
of its product, and the information
structures that underlie it. The proj-
ect team plans its work by identifying
a succession of stages from most basic
to most advanced (in other words,
the team performs requirements
analysis and general system design at
this point in the process). If a project
involves a number of tools that work
with the same data, each could be rel-
egated to a separate stage. If imple-
menting all the features in a tool
seems too big a task for one stage,
divide the functionality into subsets
and assign each set to a separate
stage.

Stages go through p h e s . Each com-
ponent goes through its own soft-
ware life cycle. We use the following
four generic phases:

Mockup. Build a quick-and-dirty
mockup of the application to get
quick feedback from potential end
users. Our team is using Macro-
media’s Authonuare for this purpose.
Other people recommend anything
from overhead transparencies to
Hypercard applications.
Prototype. The mockup (with
changes called for by reviewers) be-
comes a functional specification for a

team of programmers who develop a
fully functional prototype.
Refinement. The prototype is succes-
sively refined as end users evaluate it
and suggest changes.
Maintenance. After the refined pro-
gram has been officially released as
version 1.0, it is maintained in re-
sponse to user requests for service.

Other systems of life cycle phases
could just as well be used. For some
components-documentation, for
example-‘prototype’ will mean
something very different than it
would for program code. We typi-
cally skip the mockup phase for
stages that produce internal system
enhancements. Your life cycle should
suit the nature of your efforts.

In our case, since we are iteratively
developing a large system with test
releases every six months, the main-
tenance phase is just rolled into the
next stage. That is, bug reports from
users become part of the require-
ments for the next stage, and there is
no specific planning or staffing for
maintenance. This is likely to change
when version 1 of the software ships
to the field, a fact that illustrates the
notion of process refinement. Since
the process is a living, working docu-
ment, we are free to change it to ac-
commodate new circumstances.

At this point, the team has decom-
posed the project by function and
by time. They can create the axes of
the planning chart shown in Figure
1 , a framework for the next level
of detail. The chart accompanies the
project brief, which describes the
functional boundaries of each
component, and assigns beginning
and ending dates to the stages. Com-
plex projects may require more de-
tailed descriptions of the functional
decomposition. (In practice, things
don’t always divide tidily into compo-
nents. We sometimes define stages to
implemeut a set of enhancements or
user requirements, possibly scattered
across several components.)

The Stage-Level process
Plan the stage
Our entire process is based on the
observation that small projects are
easier to manage than big projects.
Planning proceeds top-down until
the work has been divided into many

COIIUYICAWOYS WTY. ACY October 1993/Vo1.36, No.10 49

small pieces called ‘modules.’ Each
team member uses the module-level
process definition (described later) to
manage the progress of his or her
current module, while the manager
guides the progress of the whole
series of modules toward the final
goaL8

We have experienced many bene-
fits to this approach, among them:

Plans are more accurate than they
were before we started working this
way. It is easier to estimate how much
one person can accomplish in two
weeks than it is to estimate how much
five people can do in six months.

It is easier to track progress. A pro-
grammer who is 5 days through a 10-
day module can easily tell if the
schedule is slipping and either apply
more effort or notify the manager so
dependent modules can be resched-
uled. On any day you can tell at a
glance where the project stands. This
is in strong contrast to the uncom-
fortable mysteries of tracking a
monolithic 12-month project.

We can often resolve problems be-
fore they affect the whole project.
Unexpected problems are sure to
arise, and questions like, “What was
the cause, exactly?” and, “How long
will the delay be?” are notoriously
difficult to answer for long projects.
But a dependency chart of small
modules can quickly reveal the long-
term effect of a delay in any single
module and help managers plan how
to adjust.

Developers get more “bones,” “bis-
cuits,” “herring,” “six-packs,”
That is, it’s nice for everyone in-
volved to see the progress they are
making. Every couple of weeks or so,
each person gets the satisfaction of
completing some useful bit of work
and releasing it to the rest of the
team. This builds momentum and
morale, two things that can suffer
over the long haul.

At the end of each stage (every
four to six months in our depart-
ment), the project team summarizes
the results of the just completed
stage, plans the details for the next
stage, and publishes both in a written

~~~~ 

8DIvfdo and conquer-break proms Into 
lots of bb-slzed chunks. “To make a long 
journey, take lots of amall steps." 

status report for the guidance team.g 
The detailed plan is the most diffi- 
cult part of this report, since al- 
though they know the major dead- 
lines for the next stage, the team still 
has to divide the work into “bite-sized 
chunks” they can confidently assign 
and monitor. 

Producing the detailed plan in- 
volves breaking the stage into mod- 
ules. These are not “modules” in the 
sense of subprograms, but simply 
“modules” in the sense of “units of 
work.” A module should be no more 
than about two weeks’ work for one 
person. In our object-oriented set- 
ting, typical modules might require 
implementing a single object class, 
implementing the application win- 
dow for a tool, or writing a section of 
documentation. 

In our case, the job of planning a 
stage falls to the designer with the 
most experience in whatever compo- 
nent the stage involves. He or she 
makes an inventory of all the work 
that must be done to accomplish the 
goal for the stage. Additional mod- 
ules may come from user testing, 
bug-report forms, or work deferred 
from previous stages. That is, plan- 
ning takes into account scheduled 
work, surprises left over from earlier 
stages, and predictable maintenance 
tasks whose substance is unknowable 
in advance. 

The team members most qualified 
to do so grade each module’s diffi- 
culty as “hard,” “medium,” or “easy,” 
as a guideline for estimating the time 
required to complete them. As an 
additional and more concrete mea- 
sure, the designers estimate the key 
complexity factors that affect pro- 
ductivity. In our Smalltalk project, 
they estimate the number of classes 
and methods that will need to be cre- 
ated or modified in the module.10 If 
it looks as if it will take longer than 
two weeks, we try to break it down 
into smaller modules, with the sched- 
ule taking into account dependencies 
between tasks. 

eProduce a written status report at the end of 
each atage, however presaed for tlme you 
mlght be. Thls forces you to thlnk about what 
just happmed, and to plan the next atage 
carefully before you start worklng. Publlah- 
Ing the report for your pears and supadom Is 
gnwt tor corporate communlcalon. 

The result of this work is given to 
the project leader or lead designer, 
who uses project management soft- 
ware to assign and schedule each 
module. This gives a detailed plan 
for the stage, consisting of a PERT 
chart showing the dependencies be- 
tween the modules, and a Gantt chart 
showing the schedule for each team 
member’s assignments during the 
stage. Attached to this, a description 
of each module specifies the work 
and often includes preliminary de- 
sign notes. 

This plan is circulated among the 
project team for review, modifica- 
tion, and final acceptance, and a copy 
is given to the guidance team for the 
same purpose. Only then does “real 
work” begin.” 

The Module-Level process 
Many of the principles mentioned in 
this article are incorporated into our 
process at the micromanagement 
level-the process each programmer 
follows to develop a module. Each 
module goes through a minilife cycle 
with five milestones. The actual inter- 
pretation of the milestones may dif- 
fer with the phase and type of mod- 
ule, but they essentially describe a 
plan-do-refine approach punctuated 
by peer reviews of results. In general 
terms, the five milestones are as fol- 
lows: 

Plan. This milestone is passed when 
some member of the project team 
has prepared a plan for implement- 
ing and testing the module, and sub- 
mitted the plan for review by other 
members of the project team (the 

l0A few metrlcs am better than none, and aC 
most as good as a lot of metrica. The Mck la 
to measure the rlght thlngs and moawre 
them conslstently. Early In the pro)acl m 
kept a lot of statl8tlca so wa could learn to 
eatlmate the number of clasam and mahod. 
fmded for a module, and to convut thoor 
numbers to effort eatlmates. Later In tha prol- 
ect, when modules have bean way off schad- 
ule we have run the aame metrlcs In the post 
mortem, usually flndlng that prognmtnar 
productlvlty rates have remalned conatat; 
we juai groaaly underestimated complexity. 

l l E v ~ o n e  agrees on a plan before anyom 
begins. Our team has ckdded to make d.cC 
slons by conaenaua, which means we work 
together to nnd mutually acceptabb rdu- 
tlons before Implementlng any plnna. Thls 
Isn’t always easy, but group conssmu8- 
bulldlng technlquea help [5-7, 161. 

50 October 1993/Vo1.36, No.10 CQYIUWKI-WMICY 



FUNCTION - 
Database Query Tool Reports 

Stage 1 
W 

I- 
4 

Stage 2 

Stage 3 

 mum 1. The top part of a sample 
project overview. The horizontal 
axis Shows how the work has 
been divided into functional 
components. The vertical axis 
shows how the work has been 
divided into temporal stages. The 
boxes show how each compo- 
nent‘s life cvcie Dhases maD onto 

I I the temporal stiges. 

Peer review of detailed design I and preliminary test plan 
Peer review of finished 
code and test procedures 

\ \ 
I I 

Design 
20% 40% 

Design documentation Meeting minutes Untested code Meeting minutes Revised, tested code 
Preliminary test plan Revised design Detailed test plan Revised code Revised test code 

Revised test plan Test code and data Revised tests Bug fix reports 
New release of software 

bigger the team gets, the less practi- 
cal it becomes to have the whole team 
participate in reviews). 
Approve. This milestone is passed 
when the whole project team has 
worked through the initial plan and 
has reached agreement on a revised 
plan that is ready to be given to the 
implementer. 
Do. This milestone is passed when 
the implementer has completed an 
initial implementation-for exam- 
ple, working code and test proce- 
dures for a programming module, or 
a completed first draft for a writing 
module. 
Review and Revise. This milestone is 
passed when the implementer has 
revised the code to the satisfaction of 
the project team, and the approved 
test procedures have run success- 
fully. That is, other members of the 
team have reviewed the work of the 
implementer, communicated any 
suggestions or concerns, and worked 
out remaining issues in a project 
meeting. The implementer has then 
revised the work to the team’s satis- 
faction. In a particularly troublesome 
module, further iterations of the re- 
view-and-revise cycle might be 
needed. Often the work is approved 

as submitted, with no revision neces- 
sary. 
Evaluate. When the module is com- 
pleted, the team leader and the im- 
plementer evaluate the work, the 
plan, and the process to look for 
opportunities for improvement in 
the future. For example, they may 
decide on new features or design ele- 
ments, change subsequent module 
descriptions or assignments, or mod- 
ify the way meetings are conducted. 

We know this must be a good pro- 
cess because the names of the five 
milestones make an acronym that 
spells a real word, and a religious one 
at that: PADRE. In management dis- 
cussions, we sometimes talk about 
“PADRES all the way down,” mean- 
ing that whether we are managing 
the project as a whole, managing the 
day-to-day routine of an individual 
programmer, or any of the levels in 
between, we try to go through a cycle 
of plan, approve, do, review and re- 
vise, and evaluate. 

What we are describing is known 
in software engineering as a “spiral 
life cycle,” as opposed to the tradi- 
tional waterfall model of software 
development. The project’s develop- 

rmn s. once around the spiral. 
This represents the worktypi- 
cally spent in completing a single 
coding module, including per- 
centages of total effort for each 
milestone and the documents 
created or updated. 

ment could be viewed as a large 
number of turns through a spiral, 
each bringing the team closer to its 
goal (see the sidebar entitled, “Tack- 
ling Complexity With an Iterative 
Strategy”). 

Figure 2 shows the development 
of a single module in detail, provid- 
ing a map of a team member’s work 
during the three days to two weeks it 
takes to complete a typical module. 
Notice that we have DACRR here 
instead of PADRE, since for a coding 
module it is more natural to speak of 
planning as designing and doing as 
coding. Review and revision are split 
out as separate milestones to show 
how that step is initiated by a peer 
review session, after which the pro- 
grammer makes any changes re- 
quested during the review, executes 
the test procedures, and revises the 
code until it passes all the tests.12 

Finally, evaluation is left off the 
time line completely, since it is usu- 

COIYUWICAWONS OCW. Icy October 1993/Vo1.36, No.10 51 



Original Revised Actual 
Plan Plan Date Milestone 

migun 4. An example of a mile- 
stone progress chart 

rbun 3. A “module planning 
sheet” used by programmers to 
plan and track the progress of a 
module of work. steps 2 through 
5 correspond to “PADR” in the 
PADRE process. 

I I I 

6. Integration complete I 

Milestone 
% Effort 

Modules 

Select prototype tool 
Tree editor 
Nested box editor 
Graph layout editor 
Graph overview 
Zoom and pan 
Paint molt. views 
Data maps 

Designed 
20% 

100% 
100% 
100% 
100% 
100% 

Approved Coded 
5% 40% 

100% 100% 
100% 100% 
100% 50% 

Reviewed 
15% 

100% 
100% 

Revised 
20% 

100% 
50% 

Est. 
Effort 

3 days 
5 days 
7 days 

10 days 
3 days 
3 days 
7 days 

10 days 
Total estimated effort 
Total % done 

48 days 

1 Done 

ally done by the team leader rather 
than the programmer. Evaluation is 
taking place throughout the stage as 
modules are completed, with adjust- 
ments to plan or process whenever 
scheduling goals are not met. 

The percentages shown in 
Figure 2 are typical breakdowns that 
we found in our project. There are 
frequent surprises that cause these 
figures to change. But programmers 
record the time they spend on each 
step in the process, and these figures 
make interesting reading during the 

’*Plan to teat. Plan to spend about one-third 
of your time coding, one-thlrd of your time 
W n g  and revlsing, and -third doing 
everything else. Or as OMI prom leader put 
It, “Hall of us are burnlng toast, the other hall 
are scmplng.” For aome reawn people con- 
sistently uncbrestlmate their ability to design 
and bulid thlngs the wrong way. Becauae it is 
much cheaper to kill bugs early, teams need 
to integntr testlng into ail levels of their de- 
velopment process. 1131 

postmortem of a module that took sig- 
nificantly longer than we planned. 

Lije in the team. Of course, all the 
team members are working on mod- 
ules at the same time, circulating 
documents for review and calling for 
meetings. That means each person 
not only has to complete assign- 
ments, but also read other people’s 
design documents, participate in re- 
view meetings, and share in the other 
responsibilities of keeping the team 
organized and moving ahead. 

When we started this process, 
some were worried that there would 
be so many meetings and demands 
on their time that there would be lit- 
tle time left to focus on their assigned 
tasks.I3 And in fact, we have had to 
take steps to cut down on such over- 
head: 

Limit the number of team meet- 
ings to no more than one per day. 

As much as possible, limit meetings 

to one hour. If a meeting needs more 
time, use the last five minutes to 
schedule a continuation meeting. 

Use a facilitator (or at least keep 
the mind-set of a facilitator) to make 
sure action items are recorded and 
assigned, to draw everyone into dis- 
cussions, and to make meetings pro- 
ductive and effective. 

Ask each person to designate a 
“principal reviewer” for a review 
meeting. This person is honor- 
bound to read the design or code, 
and to return comments to the au- 
thor within 24 hours of receiving it. 
Other people are asked to partici- 

la% far as possible, protect p q A e  from red 
tape, interruptions, and unnaceasay over- 
had. Thla isn’t easy advice to follow, rlnce It 
Involves everything from organizatlonai 
change to facllItlw planning and ergonom 
ica. Many books give good advlce in thls 
area, among them DeMarco and Uster’s ex- 
cellent Peopfewarr, [lo]. 



@+ P r o i o r t  O r g a n i r a t i m m  and M a n a g e m e n t  

Our entire proms is based on the obsmation that small 
prolects are easier Co manage than big 

projects. Planning proceeds topdown 
until the work 

pate, but if they are busy they can 
bow out without suffering pangs of 
guilt. The role of principal reviewer 
rotates through the team. 

Make peer review meetings op- 
tional. Now that the team is estab- 
lished, we hold review meetings at 
the discretion of the author and the 
principal reviewer, who may call a 
meeting if a module involves difficult 
questions or has far-reaching effects. 
New team members’ work is re- 
viewed in meetings as a way of ac- 
quainting them with the team, the 
project, and the process. 

Provide good administrative sup- 
port to the team: someone to answer 
phones, manage the group archive, 
make photocopies, schedule meet- 
ings, fend off unnecessary demands, 
and in general grease the wheels of 
progress. 

Keep the teams small. The peer 
review process works if no more than 
four people are developing modules 
at once. Larger teams will need to 
divide into smaller peer review 
groups. 

With these measures in place, we 
have been satisfied with our produc- 
tivity. When we plan, we assume that 
people will be able to spend four 
hours per day focusing on their as- 
signed task. The other hours are 
spent in meetings, reading, and exis- 
tential overhead. This sounds high 
until you realize that the four hours 
spent away from the assigned task 
are largely taken up with making 
other people on the team produc- 
tive-far more than half the day is 
spent furthering the interests of the 
team. Our untested suspicion is that 
the variety of tasks imposed by this 
process, together with the momen- 
tum built by three or four people 
pushing to get modules completed, 
makes the team far more productive 
than if all spent eight hours a day on 

their own work. 
Another advantage comes from 

the cross-training everyone receives 
by reviewing one another’s work. 
People tend to settle into specialties, 
often receiving assignments that re- 
late to the same subsystem. But be- 
cause they constantly read about one 
another’s work, no one is completely 
in the dark when asked to work on an 
assignment outside one’s specialty. 

Do the module: micromanaging. 
When a team member starts a mod- 
ule, it is clear what should be done, 
when it is due, and how it fits into the 
larger picture. When a team member 
sits down to work each day, he or she 
usually knows exactly what to work 
on, and how much must be accom- 
plished to stay on schedule. Team 
members are, in effect, managers 
over a small two-week project, 
charged with the responsibility of 
herding their assignments through 
the PADRE process. 

We have designed a form to help 
these micromanagers, called the 
“module planning sheet” (Figure 3). 
This sheet‘is a key tool for time man- 
agement and project tracking, at 
once a byproduct of detailed plan- 
ning and an enabling technology for 
tracking deve10pment.l~ The first 
day at work on a module, a team 
member fills in the “estimated days 
to complete” field and the “begin” 
date in the “original” column in the 
module planning sheet, taking fig- 
ures from the original schedule for 
the stage. The other dates in the first 
column are calculated by multiplying 
the estimated days to complete the 

h been divided into many small moduh. 

C O I Y U D I I C I T I O W O r m r e u  October 1993/Vol36, No 10 53 

“Make the process concrete In your forms- 
design them to reflect the expectntiona and 
dellvernblea speclfkd In the pmcess. Forms 
such as the module plsnning sheet help 
guide people through the process of com- 
plaing n module, serving as n minder cmd n 
tool for gntharlng important Infomatlon. A 
good form is an effectlw job nid. 

work by standard percentages for 
each milestone (see Figure 2). 

The “revised plan” column is filled 
in after the team member has pro- 
gressed far enough into the module 
design effort to evaluate the original 
estimate for days to complete the 
module. It may now be clear that the 
work was originally over- or underes- 
timated, and the plan needs to be 
adjusted accordingly. If a program- 
mer thinks the module will take 
longer than planned, he or she must 
negotiate the revised estimate with 
the team leader. The blank for “re- 
vised estimate” is then filled in, and 
the “revised plan” column is com- 
pleted by beginning with the actual 
start date and using the standard 
milestone percentages to extrapolate 
the other dates. The new set of target 
dates for each of the milestones then 
becomes a measuring stick, for just 
this module in isolation, for answer- 
ing the question, “Am I doing a good 
job?” By agreeing on the new esti- 
mate, the team leader is saying, “I 
think you have done a good job if 
you can finish the module in this 
many days.” 

The last column gets filled in as 
the work on the module proceeds, 
documenting the programmer’s ac- 
tual progress toward completion. 
This sheet, together with a time sheet 
that lists hours spent on each step of 
the module, is given to the project 
leader when the module is finished. 
The project leader uses the informa- 
tion to update the project status, 
update the productivity history for 
use in the next round of estimating, 
and evaluate what is going wrong 
with the process if the module has 
taken an excessive amount of time. 

Tracking progress. Having defined 
the process of project management 
in such detail, we have a powerful 
tool for tracking the progress of a 
project. For each stage, the project 



leader creates a “milestone progress 
chart,” like the one shown in 
Figure 4, using spreadsheet software. 
This chart lists the modules involved 
in completing the stage and shows 
the progress of each module through 
the spiral. As team members fill out 
module planning sheets, they report 
their progress to the team leader, 
who updates the appropriate prog- 
ress chart. The chart is kept on the 
wall in the team’s conference room, 
so everyone can see how things are 
progressing. l5 

It was stated earlier that breaking 
big tasks into bite-sized modules 
makes it possible to monitor the task. 
Figure 4 shows a concrete example of 
that concept, providing an accurate, 
easy to read, detailed picture of the 
project’s status. It also provides a tool 
for planning-the spreadsheet can 
use the dates at the top of the form to 
extrapolate to the probable finishing 
date given the number of days ex- 
pended so far and the percentage of 
scheduled days that have actually 
been completed. 

The chart shown in Figure 4 is our 
simple version. We also have a more 
complex version that keeps track by 
individual team member, so we know 
not only what the schedule variance 
for the whole team is, but also each 
team member’s contribution to that 
variance. 

Evaluate and Refine 
At the end of each stage, the team 
sets aside time to reflect on the previ- 
ous few months. Did any modules 
take far more or less effort than 
planned? Why? What can be done to 
avoid such miscalculations in the fu- 
ture? 

This makes an excellent frame- 
work for talking about problems and 
identifying improvements. If a mod- 
ule takes too long to complete, peo- 
ple are less likely to place blame on 
the programmer than they might be 
in other frameworks. In the spirit of 
group ownership of the project and 
the process, the poststage discussion 

‘OKoep everyone informed about the project’s 
status. We post progress charts publicly, in- 
cluding the ones that show the progress of 
Indlvldual team members. The simple act ol 
postlng this Information builds morale, helps 
people faei Included, and provides incentive 
to make progress. 

is more likely to focus on how the 
programmer could have been better 
supported, how planning could have 
improved our original time esti- 
mates, or how the process could 
change to improve performance in 
the future. 

The productivity metrics collected 
during each module provide objec- 
tive data on which to base improve- 
ments. When analyzing a trouble- 
some module the project leader has 
time sheets, complexity measures 
(class and method counts, perhaps 
with counts of decision points), de- 
sign documents, results of user tests, 
and meeting minutes at his or her 
disposal. Additionally, the team 
member responsible for the module 
has been trained to think not only 
about technology but also about pro- 
cess and communication. As the 
total-quality books suggest, accurate 
measurement and a desire to im- 
prove are two important ingredients 
for excellence. 

Summary and Rue Confessions 
We have described a process for 
planning and managing software 
development. Our experience has 
made us enthusiastic believers in the 
principles mentioned in this article 
and cautious believers in the specific 
embodiment of those principles in 
the PADRE process. We say “cau- 
tious” as a reminder to ourselves and 
our readers that this is only a snap- 
shot of something that constantly 
changes. We can no more tell others 
they should run their projects exactly 
this way than we can predict how we 
will be running projects next year. 
The specifics will change to fit cir- 
cumstances and personalities; the 
principles will not. 

During the first two stages, we 
were eager to know how this ap- 
proach would affect our productivity 
and quality, so everyone readily con- 
tributed detailed data about his or 
her work: metrics forms, time sheets, 
planning sheets, and so on. We were 
pleased with the results. We were 
more productive here than on previ- 
ous projects, we were improving our 
ability to plan and estimate, and the 
process was becoming a habit rather 
than an exercise. 

As the stages went by, it was all less 
new and exciting. We now collect far 

less data, having settled on a few key 
metrics. We are less formal in assign- 
ing roles during meetings. We some- 
times skip review meetings, having 
learned a little about recognizing the 
difference between troublesome and 
benevolent modules. 

For these reasons, and because the 
nature of our work is changing as we 
move from systems development to 
applications, our process is evolving. 
For example, after using the module 
planning sheets for a year or so, they 
fell into disuse-the team felt that 
the milestone progress chart was 
adequately meeting our need for 
tracking and accountability. Now the 
team leader makes the rounds once 
every week to check each team mem- 
ber’s progress, and enters the find- 
ings on the chart. 

The process documented here is 
the result of a recent refinement, an 
effort to incorporate the lessons of 
the past three years and to accommo- 
date a broader range of activities. We 
wanted a process that would work for 
other teams in our organization- 
something we could easily teach to 
other managers and apply to new sit- 
uations. The process continues to 
refine itself. 

References 
1. Arthur, L.J. Improving Software Quul- 

ity: An Insider’s Guide to TQM. Wiley 
and Sons, New York, 1993. 

2. Brooks, F.P. The Mythical Man-Month. 
Addison-Wesley, Reading, Mass., 
1978. 

3. Connell, J. and Shafer, L. Structured 
Rapid Prototyping: An Evolutionary 
Approach to Sofhuare Develapment. 
Prentice-Hall, Englewood Cliffs, N.J., 
1989. 

4. Constantine, L. Building structured 
open teams to work. In Proceedings of 
Sofhuare Development ’91, Miller Free- 
man, San Francisco, Calif., 1991. 

5. Constantine, L. Decisions, decisions. 
Comput. Lang. (Mar. 1992). 

6. Constantine, L. Consensus and com- 
promise. Comput. Lang. (Apr. 1992). 

7 .  Constantine, L. Negotiating consen- 
sus. Comput. Lung. (May 1992). 

8. Constantine, L. The lowly and ex- 
alted scribe. Comput. Lang. Uune 
1992). 

9. Constantine, L. Team harmony. C m -  
put. Lang. (Sept. 1992). 

10. DeMarco, T. and Lister, T. People- 
ware: Productive Projects and Teams. 
Dorset House, 1987. 

11. Gery, G.J. Electronic Performance Sup- 

October 1993/Vo1.36, No.10 ~ ~ I I ~ I H ~ T I ~ D & ~  om M IKY 



port Systems. Weingarten Press, Bos- 
ton, Mass., 1991. 

12. Rettig, M. Software teams. Commun. 

13. Rettig, M. Testing made palatable. 
Commun. ACM 34,5  (May 1991), 25- 
29. 

14. Rettig, M. Cooperative software, 
Commun. ACM 36,4 (Apr. 1993), 23- 
28. 

15. Rettig, M., Simons, G. and Thomson, 
J. Extended objects. Commun. ACM, 

16. Scholtes, P.R. The Team Handbook. 
Joiner Group, Madison, Wis., 1988. 

ACM 33, 10 (Oct. 1990), 23-27. 

36, 8 (Aug. 1993), 19-24. 

CR Categories and Subject Descrip- 
tors: K.6.1 [Management of Computing 
and Information Systems]: Project and 
People Management-training; K.6.3 
[Management of Computing and Infor- 
mation Systems]: Software Development; 
K.7.2 [The Computing Profession]: Or- 
ganizations 

General Terms: Management 
Additional Key Words and Phrases: 

Software teams 

About the Authors: 
MARC RETTIC is a former member of 
the technical staff at the Summer Insti- 
tute of Linguistics and currently a perfor- 
mance support architect at Andersen 
Consulting. Current research interests 
include supportive applications and in- 
formation design. Author's Present Ad- 
dress: 69 West Washington Street, Chi- 
cago, IL 60602; email: 76703.1037@ 
compuserve.com 
GARY SIMONS is director of academic 
computing at the Summer Institute of 
Linguistics. Current research interests 
include object-oriented conceptual mod- 
eling and the Text Encoding Initiative. 
Author's Present Address: 7500 West 
Camp Wisdom Road, Dallas, TX 75236; 
email: gary.simons@sil.org 

Permission to copy without fee all or part of this 
material is granted provided that the copies are not 
made or distributed for direct commercial advantage, 
the ACM copyright notice and the title of the publi- 
cation and its date appear, and notice is give that 
copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

@<CM 0002-0782/93/1000-044 $1.50 

9th Annual Computer Security 
~ p p  ficatwns Conference 

December 6 - 12,1993 
Orlando Marriott International Drive, Orlando Florida 

The only information Systems Security conference 
that gives you real solutions to real problems 

NEW// 
Informative 
Tutorials 

Vendor Track 

Belcore 
CTA, Inc. 

Secureware 
PRC 

Brilliant TIS 
Technical 

Papers 

Panel and more. 
Stimulating Verdix 

Discussions 
Controversial Great Debates 

Distinguished Lecturer Keynote Speaker 

Laboratory Systems Security 

H.O. Lubbes Bob Ayres 
Naval Research Dir. of Center for Information 

DlSA 
Advance Programs are now available. Contact one of Ihe fO/lWhg: 

Diana Akers Dr. Ronald Gove 
Publicity Chair Conference Chairman 
The MITRE Corporation Booz-Allen 8 Hamilton 
7525 Colshire Drive 8283 Greensboro Dr. 
McLean, VA 22102 McLean, VA 22102 

akers @mitre.org goverOjmb.ads.com 
(703) 883-5907 (703) 902-5280 

THE BURNING MUST STOP. 
NOW! 

Ram forests occupy just 2% of the 
earths surface. Yet, these rain for- 
ests are home to half 
of the planet's tree, 
plant and wildlife 
species. Tragically, 
96,000 acres of 
rain forest are 
burned every day. 
You can help 
stop this sense- 
less destruction. 
Right now you 
can join The 
National Arbor 
Day Foundation, 
the worlds larg- 
est tree-planting ' 

environmental organization, and 
support Rain Forest Rescue to stop 
further burning. 
You'd better call now. 

Prize Winning PC Software! 
Artificial Intelligence for IBM/PC 

1. EASY NEURAL NETWORKS 
Easiest way to quickly learn about 
this fascinating new technique ... 
ncludes a working Neural Network 

your class can train $59 

2. PC THERAPIST IV - animated 
talking head talks thru the PC Speaker! 
First software to pass a limited 
Turing Test of conversational ability 
at the Boston Computer Museum $69 

BOTH $99 + Includes 3 BIG Catalogs 
and FREE Talking Expert System Demo! 
Please specify disk size or we ship 3.5" 
- Check, American Express, or P.O. to: 
THINKING SOFTWARE, INC. 
46-16 65TH PLACE, Dept 3000 
WOODSIDE, N.Y. 11377 PHONE (718) 603-3638 

p.s. ---- 
Professors - make computing come alive 
for your students, order our fascinating 
Turing Test Lab ...... only $149.95/4 disks 

100 Dage manual -Information on Request. 
Circle # 101 on Reader Service Card 


