S\\Monﬁ

WORKING PAPERS FOR THE LANGUAGE VARTATION
ANRD LIMITS TO COMMUNICATION PROJECT

Fumber ?

A PACKAGE OF COMPUTER PROGRAMS FOR
THE ANALYSIS OF LANGUAGE SURVEY WORD LISTS

Gary Simons
Cornell University

and
Summer Institute of Linguistics

1977

A PACKAGE OF COMPUTER PROGRAMS POR

THE ANALYSIS OF LANGUAGE SURVEY WORD LISTS

Gary Siwmons

Cornell University
and
Summer Institute of Linguistics

Os IRTRODUCTION

l. AN OVERVIEW OF THE WORD LIST ANALYSIS PACKAGE
1,1 The "partial automation" and: "interactive! approaches
1.2 The overview

2e A USER'S GUIDE TO THE WORD LIST ANALYSIS PACKAGE
2e1 Input .
2elel Enter a gloss file
2ele2 Enter the first word list
2ele3 Extract the word list alone
2elel4 Phonemic analysis ;
2ele5 Entering additional word 1ists
2+1e6 Edit the previous word list
2.1.7 Edit a word list saved om tape -
2¢1le8 Enter the whole list into a clean buffer
2e1e9 Morge word lists into a single master file
2.2 Phonemic analysis
2e2el Preparation
2.2+2 PhoOne occurrences
2.2¢35 DPhone co-occurrences
2e2elt Word shapes
2+.245 Syllable shapes
2e3 Lexicostatistic analysis
2¢3s1 Count cognates , ‘
2e3e2 Build a matrix of cognate counts
2¢3¢3 Permute the matrix of cognate counts
2.4 Lexical isogloss analysis
2eltel Extract a lexical isogloss file
2.be2 Analysis of lexical isolgosses
25 Phonostatistic analysis
2eD5el Pre-program data formatting
2eDe2 Format checking
253 FEnter the degrees of difference table
2e9e.4 Phonostatistics
2.6 Comparative method
2e64l Pre-program data formatting
2.642 Count correspondence sets
2e6.3 Phonological isogloss analysis
2+.7 Refined phonostatistic analysis

2

3. THE PTP PROGRAMNING LANGUAGE
3.1 Updates to the PTP user's manual
5«2 A summary of PTP commands and special characters

4o PROGRAM LISTINGS

4.1 Input

4elel Copy 2 to 3

Leles2 Extract list

Lele3 Zero 3

LeleL Merge glosses into list
Lele5 Merge lists.

L.2 Phonemic analysis

L2, Words alone

L.2.,2 ©Phone occurrences

Le243 Phone co-Occurwances
Le2e4 Word shapes

Le2e5 Syllable shapes

Le2e6 Find examples

Le3 Lexicostatistic analysis
Le3,1 Count cognates

Le3,2 Build cognate matrix
te3¢3 Permute matrix

Lol TLexical isogloss analysis
Leliel Lexical isoglosses
LeL4e2 Isogloss analysis

L.5 Phonostatistic analysis
Le5.,1 Check farmat

Le5«2 Phonostatistics

Le6 Comparative method

L,6s,1 Prepare a set

Le6,2 Delete a set

Le6e3 Copy a set

Le6el4t Count correspondence sets
Le6e5 Isogloss analysis
Le6e6 Find examples

Le7 Refined phonostatistic analysis

REFERENCES

0. INTRODUCTION

The Word List Analysis Package is a package of computer
programs which aid the linguist in his analysis of the word list
data collected in a language survey. The phases of the analysis
in which the programs assist the linguist are phonemic analysis,
lexicostatistics, lexical isogloss analysis, phonostatistics,
comparative method, phonological isogloss analysis, and a refined
phonostatistics in which the relative effects of different causes
of sound change can be guantified. The Word List Analysis Package
runs on a fully portable microcomputer which will operate in field
conditions, Use of these tools can open up to the 11ngulst in the
field a depth of analysls which is seldom achieved.

Sectlon one of the paper gives a brief overview of the
Word List Analysis Package and discusses the '"partial automation"
and "interactive'" approaches taken in writing the programs.
Section two is a detailed user's guide to the package of programs.
It is designed in such a way that the linguist with no computer
background, after a minimum of instruction on operating the
microcomputer, should be able to follow the guide step by step
to perform a full analysis of his word list data. ®Section three
gives a summary of the programming language called PTP, the
Programmable Text Processor, which was used to write the programs,
Special attention is given to the changes that have been made to
PTP since the PTP user's manual (Simons 1977) was written., In
section four, complete listings and structured descriptions of
all the programs comprising the Word List Analysis Package are
given,

" The Word List Analysis Package was developed in conjunction
with the Cornell University research project "Language Variation
and Limits to Communication’ (Dr. Joseph E. Grimes, Principal
Investigator). The project is being partially supported by
grant BNS76-06031 from the National Science Foundation. The
programs are currently operating on a portable microcomputer called
the Electronic Text Processor, model ETP-8L. It is an Intel 8080
based 8-bit microcomputer with a 16 kilobyte (roughly 16,000
characters) memory. During 1977 the author has used an ETP-8L
in the Solomon Islands to process the data resulting from
linguistic field research. :

Figure 1. Overview of the Word List Analysis Padkage

User's Input Program Set - Program Output

PHONEMIC §honemes and allophones
o . ~———3> Syllable and word structures
ANALYSIS . X . :
Phoneme distribution

Individual <i:j
ist]
W°rd lists . Merged master file of
3 selected word lists
c isions — J - > * ea
ognate decisions ——> INPUT Serves as basic data file
k///////// for remaining programs.
LEXICOSTATISTIC Cognate percentages
—_— . ;
ANALYSIS Optimal permu?atlon of the
; cognate matrix
LEXICAL
ISOGLOSS ———> Lexical isoglosses .
ANALYS3IS
" Data formatting \

Statistical measures of
——% the phonological differences
between dialects

> PHONOSTATISTIC
Degrees of -7 ANALYSIS
difference table

\/
. . - Regular correspondences
Data formatting-——~f900%§§£i$$V“ ——> Phonological isoglosses
, Reconstructed proto-forms

Statistical measures that

REFINED
PIONOSTATISTIC ——> d?monstrate effects of
i different models of
ANALYSIS

language change

i e

&,

1. AN OVEZRVIE: OF THE WORD -LIST ANALYSIS PACKAGE

An overview of the whole Word List sanalysis Fackage is
diagrammed in Figure 1. The figure is set out in three columns,
The first column, labelled "User's Input®, shows what data and
formatting must be entered by the user before the programs can be
run, The second column, labelled MProgram Set'', lists the seven
different sets of programs of which the whole package is comprised.
The third column, labelled "Program Output', lists the kinds of
output which the user can obtain from the results of the programs.

1.1 The "partial automation® and "interactive'" approaches

The approach taken in these programs could be called one of
Upartial automation. That is, the derivation of the results
listed in the third column of Figure 1 is not entirely automatic.
The computer is programmed to do those things which it does well--
sorting, counting, comparing, filing, permuting, finding examples,
The user for his part makes the key decisions, basing those
decisions on both the computer's tabulations and his own experience.
Thus when Figure 1 states that "phonemes and allophones! are
outputs of the phonemic analysis set, it means that the phone
occurrence, phone co-occurrence, and phone distribution counts
output by the phonemic analysis programs are the results to
which the user can apply his linguistic experience to obtain
directly an analysis of the phonemes and their allophones.

The "partial automation’' approach was taken by Frantz (1970)
in his COMPASS program for assisting the comparative linguist. 1In
many ways, my treatment of phonostatistics and the comparative
method are based on his approach. In that approach the linguist
determines which words are probable cognates and which segments
in those words correspond. The computer then performs the time
consuming intermediate step of comparing the cognate forms to
compile statistics on the correspondence sets that occur and lists
of supporting evidence for each. The linguist, by comparing the
statistics and by examining the forms which evidence the
correspondence sets, makes the final decisions as to which are
the regular corresponces and which are the irregular.

In many cases the user's décision making is further aided by
an '"interactive'' approach. . There are a number of programs which
reorder the results and display the same facts in a different
way. Other programs find all the examples of a specific thing.

In running these programs the user is able to "interact" with the
computer by using it to test different hypotheses and find examples
which support or refute those hypotheses. - This is another way

in which the computer aids the linguist in making final decisions.

To fully automate the decision making processes (that is,
to embody the complete experience of the linguist in a computer
program) is probably impossible. In the least it would tax the
upper limits of the microcomputer and the programmer. Thus we
adopt a‘”partial automation approach in which the computer,
by doing what it can do best, frees the linguist to devote his
time to doing what he can do best,

l.2 The overview

The Word List Analysis Package begins with a set of INPUT
programs by means of which the user enters all of the ward lists
which are to be analyzed. At the same time the user enters
the cognate set identifiers that indicate which words are
judged to be cognate and which words are not. As an individual
word list is entered it may be run through the PHONEMIC ANALYSIS
programs in order to determine for that dialect the phonemes and
their allophones, the distribution of phonemes, and the structure
of syllables and words. After all the word lists have been
entered and saved on tape, the user selects a set of lists
(either all of them, or any subset) which he wishes to analyze.
These individual lists are merged into a single master file
which serves as the basic data file for the remaining programs.

In the LEXICOSTATISTIC ANALYSIS programs, the number of
cognate words between each pair of lists in the merged master
file is counted., The cognate counts are built into a matrix
which .can be interactively permuted in order to explore the
divergence and convergence relationships between languages and
to find the optimal permutation of the matrix for display
purposes.

The LEXICAL ISOGLOSS ARALYSIS programs first extract a
lexical isogloss file from the merged master file., Then an
interactive program allows the user to permute and re-sort the
icogloss file in order to group together word list items with
like isogloss patterns, “When the grouping of isogloss patterns
is completed, the isoglosses can be copied directly onto a map
as. isogloss lines., DLach line can be labelled with the numbers
of the items exemplifying the isogloss.

Before the PHONOSTATISTIC ANALYSIS programs can be run,
the user must do some manual formatting of the merged waster file
to ensure that all corresponding segments in cognate words are in
the same position in the word, A program checks that the ‘
formatting is correct before moving to the analysis step. The
checking program also extracts a list of all the sound correspon-
dences that occur in the data. Before proceeding to the

R

rhonostatistic analysis, the user is required to assign a degree
of phonological difference to each sound correspondence and enter
it into the table of correspondences. The phonostatistics - .
program is then run to compute statistical measures of the phonO*
logical dlfference between each pair of dialects. :

Before the COMPARATIVE METHOD ‘analysis can be carried out,
it is necessary for the user to do scme additional formatting of
the merged word lists, Three programs are provided to help with
this. VWhen formatting is complete, a program is run to make a
tabulation of all the correspondence sets that occur and their
frequency of occurrence. Two programs are provided to help
the user in his analysis of the results--a program which
permutes and re-sorts the table of correspondence sets in order
to group like correspondences, and a program which finds all the
examples of any given correspondence set. On the basis of this
analysis, the user shomld be able to posit the regular sound
correspondences between the dialects represented in the word i
lists., ©On the basis of the regular sound correspondences he can
define phonologlcal 1soglosues and reconstruct proto-forms.

- The REFINED PHONOSTATISTIC ANALYSIS combines phonostatistlc
analysis with the results cf the comparative method to break down:
the analysis of degreeg of differcnce- into the degrees of
difference accounted for by the regular sound correspondences
between dialects and the degrees of difference accounted for by
irregular correspondences. The results of this analysis provide
statistical measures of the relative effect of different models
of language change in explaining the phonological relatiems
between languages. For instance, the degrees of difference
accounted for by regular correspondences are explained by a
divergence model (eg. sound drift, sound laws with no exceptions).
Degrees of difference accounted for by irregular correspondences
give evidence for social explanations of language change
(eg. word tabooing, convergence via contact).

2. A USER'S GUIDE TO THE WORD LIST ANALYSIS PACKAGE

The user's guide is set out in a step-by-step instruction
format. Unless otherwise noted, the user is meant to proceed
sequentially from section to section. If the sequence of steps is
other than to the following section, a statement telling which
section to go to next will be given. Whenever the instruction to
run a program is given, a cross-reference to that program's .
listing in section four is a"so glven.

Before the user can operate the wWord List Analysis Package
on the microcemputer, it is necessary that he be able to operate
the immediate mode commands of -PTP, These include commands for
buffer pointer movement, character deletion and insertion,
pointer manipulations, and cassette input and output. See the
PIP user's manual (Simons 1977:6-11) for further information.
Another command which the user must know is the execute command,
EXC, - A1l of the programs are stored in buffer 1l. . In order to
run a program, set the buffer pointer to buffer 1 (SBP command)
and then use the MFL (move forward a line) command to step
through the programs in the program buffer. When the desired
program is found (the buffer pointer immediately precedes the
name of the program) give the OEXC command to run the program.

2.1 Input
2.1.1 Enter az gloss file

Position the buvffe: pointer to the beginning of buffer 2.
Use the INS (insert) command to enter the gloss file. Each entry
in the file must begin with the double cross, #, character and
end with a CRLF (carriage return/line feed). The first entry is
a mnemonic identifier for the list. The remaining entries
are the glosses for the word list items. They should begin with
a number for easy reference. A sample gloss file is the following:

#ENG

#1. head

/#2. hair

#3. nose

P, eye
etc.

When the gloss file is fully entered, enter a header block and save
the file on tape (see PTP user's manual, section 3.6). Delete the
header block before proceeding., Next run "copy 2 to 3" (4,1.1)

to copy the gloss file into buffer 3.

2.1.2 Enter the first word list

The gloss file now copied into buffer 3 may be thought of as
a blank word list., The user's task is now to fill in the word list.
A1l words are antered directly in front of the correspnding gloss.
Position the buffer pointer to ihe beginning of buffer 3 and enter
the mnemonric identifier for the word list. It must be three
characters in length. Toc enter each word, postion the buffer
pointer to the beginning o the gloss and then enter the appropriate

word using the INS command. At the end of the word, press ESC.: -
(escape) to terminate the entry. No CRLF is entered thus the
word and the gloss run together on the same line, _Give the

MFL command to advance to the next gloss. Digraphs may not occur
in the orthography used for entering the word lists. The phonemic
ana1y51s, phonostatistic analysis, and comparatlve method programs
require that all phones be.encoded by a single character. -
Therefore, a suitable computer orthography must be worked ‘out .
ahead of time (see PTP user's manual, section 2, for a discussion
of the character set).

Before entering the word lists, the lists should be compared
item by item in order to make cognate decisions.. The decisions
are indicated by assigning words to cognate sets (Carroll and Dyen
1962; Sanders 1277:36-7). Two words a851gned to the same
cognate set are judged to be cognate; words in different cognate
sets are Judged to be non-cognate. The first character in every
word list entry is its cognate set identifier., In general, all
cognate set identifiers in the first list entered will be the
number one. As additional cognate sets are needed,: they are
a551gned in numerical order. After nine is reached, the upper
case letters are used beginning with A, The completed word
list should appear as follows: C

BILAENG
. 1tabana#l. head
lkataa#2. ‘hair
" lnora#3. nose
Imatajh, eye.
- etc.

2.1.3 Extract the word list alone

Run "extract list" (4.1.2) to copy the words without glosses .
into buffer 4., The word list in buffer 4 should now appear as
follows: : »

BIL
ltabana
-lkataa
- 1lnora
lmata -
etc.

Enter a header block for the word list and save the word list on
tape. ,

10

2.1l.4 Phonemic analysis

If the phonemic analysis programs are to be run on the current
ward list, it is best done at this stage while the list alone is
standing 1n buffer 4. Delete the header block far the word list
and then proceed with the phonemic analysis programs as outlined
in section 2.2, Continue with 2.1.5 when phonemic analysis is
completed. ‘ ‘ '

2.1,5 Entering additional word lists
For enfering additional word. lists theré'are three options:

(1) Edit the previous word list., Go to 2.1.6.

(2 Edlt a former word list which was saved on
tape. Go to 2.1.7.

(3) Type the whole list into a clean buffer., Go to 2.1.8.

If all the lists have been entered and saved on tape, go to 2.1.9.

2.1.6 Edit the previous word list

The word list combined with glosses that remains in buffer 3
is edited to represent the new list which is now being entered.
If words in the new list are identical to words in the previous -
list, leave them untouched. If words in the new list are cognate
but have a different pronunciation, edit them to represent the
proper form in the new list by using the PTP immediate mode text
editing commands., If words in the new list are non-cognate,
delete the previous word and enter the new word with a different
cognate set identifier, 1In using this approach it is best to
enter the lists in such an order that the most similar lists are
dealt with in succession. In this way the amount of work
involved in entering the data is minimized. When editing is
complete, go to 2.1.3.

The following example is given to illustrate what is meant by
editing the word list. The list on the left is the original list;
the list on the right is the edited second list, In the original
list, those characters which were deleted are underlined. In the
second list, those characters which were inserted are underlined,

BIL#ENG BL2#ENG

ltabana#l. head ltabana#l. head

lkataa#2. hair -——————J> lgataa#2. hair

lnora#3. nose s 2usu#3. nose

Imata#l. eye lnataih, eye
etc, etc,

1l

2.1,7 Edit a word list saved on tape

First clear buffer 3 by running "zero 3" (4.1,3), Then
read the desired list into buffer 3. Run "merge glosses into
list" (4,1.4) to make a combined gloss and word list in buffer 36 -
Edit the word list as in step 2.1.6 above, Go. to 2.1.3.

2,1,8 Enter the whole list into a clean buffer

First run "zero 3" (4.1,3) to clear buffer 3. Then run
"copy 2 to 3" (4.,1,1) to put the gloss file into buffer 3.
First enter the three character mnemonic identifier and then
all the words with their cognate identifiers. Follow the
procedure used in step 2.1l.2. Go to 2.1l.3.

2.1.9 Merge word lists into a single master file

Before any further analysis can be done, the individual
word lists that have been saved on tape must be merged into a
single master file. The user must first select the set of
word lists which he wishes to analyze. Then run '"'merge lists"
(4,1.5) to perform the merge. The merged master file will be
created in buffer 2.

The merge program is interactive and will merge any number of
lists from two to ninety-nine. When the program is run, the message
"glosses'" will appear on the screen, This is the user's prompt
message that the program is in the view mode and ready to read in
the gloss file for the word lists. Mount the proper tape,
position it before the header block by means of the digital
counter on the tape drive, and then put the drive into play mode,
A1l characters read from the tape will be echoed onto the screen
but not inserted into the buffer. When the header block appears,
press the ESC key. The program then executes a cassette read
command and the gloss file is read into buffer 2. When the
reading is comple te the prompt question 'more or no?'" appears,

At this point turn off the tape drive and ready the next word list
for reading by mounting and positioning the proper tape. PTP is
now in the immediate mode with the buffer pointer preceding the
question "more or no?". Answer this question of whether or not
there are more lists to merge by positioning the buffer pointer
in front of the word which is the answer-~'"more" if there are
more lists, "no" if the merging is completed. Then type # to

. return PTP to program control, If the response was '"more'", the
prompt message "view'' appears.: This indicates that the program is
executing a cassette view routine in anticipation of reading in a
word list, Read in the word list as described above far the

12

gloss file. When the reading is complete, the word list will be
merged into the master file in buffer 2, When this begins to
happen (it will be obvious in watching the display--echoing of
characters as they are read in stops, and sequencing through the
word list begins) turn off the tape drive and ready the next word
list, Answer ‘the question when it appears. If the response is
"no" then the program terminates with the buffer pointer at the
beginning of the merged master file.

For the three word lists BIL, BL2, and GAL with the ENG gloss
file, the merged master file would appear as follows: :

#ENG
BIL
BL2
GAL
#1. head
ltabana
ltabana
ltabana
#2. hair
lkataa
lgataa
2kona
#3. nose
lnora
2usu
2uyu
#, eye
lmata
lmata
lmata
etc.

If the master file is to be saved on tape, type a header block,
After saving the file, delete the header block. Go to 2.3 to
begin lexicostatistic analysis of the merged word lists.

2.2 Phonemic analysis

The programs in the phonemlc analysis set aid the user in
determining the phonemes of a language and their allophones, in
determining the distribution of phonemes, and in determining the
structure of syllables and words. With the results of the analysis.
stored in a buffer, it would be possible to convert automatically all
phonetic transcrlptlons into phonemic ones, However, phonetic data
are required for the phonostatistics programs in 2.5 and 2.7,

The comparative method in 2.6 must determine regular correspondences
between phones in order for the refined phonostatistics program

in 2.7 to work properly. Thus the phonetic word lists will not be
converted into phonemic ones. Nevertheless, the comparative
method is generally applied at the phonemic rather than the
phonetic level., TIn this case, since the comparative method
programs in 2,6 will actually be applied to- phonetic word lists, -
it is necessary to combine the results of phonemic analysis with
the results of the comparative method in order to determine the
regular correspondences between dialects at the phonemic level.
Comparing the results of the phonemic analysis of different

word lists mey show differences in the allophonic manifestations
of phonemes, in the distribution of phonemes, or in the structure
of words and syllables. If such differences occur, additional
phonological isoglosses can be posited (see section 2.6.3).

A word list may not contain enough data to perform a complete.
phonemic analysis. For the sake of improving the phonemic
analysis, the user may add words to the list in buffer 3. It will
be necessary to follow the same format exactly--a fake cognate
set identifier, the language word, a #, the gloss, a CRLF-«for each
added entry. Run "extract list" (4,1.,2) to copy all the words
without their glosses into buffer 4. If the user has more
extensive data on only one or two dialects, the complete analysis
can be done on those. Then the results obtained from any less
complete analyses can be interpreted in the light of the wmore
complete analysis of a related dialect.

2.2.1 Preparation

Before performing the phonemic analysis, it is necessary to
strip the mnemonic identifier and the cognate set identifiers from
the word list in buffer 4., To do this, run "words alome" (4.2.1).
The result would appear as follows: ' '

~ tabana
~kataa
nora
mata
etce

14

2.2.,2 Phone occurrencés

.Run 'phone occurrences" (4,2.2) to compile in buffer
5 a list of all the phones which occur in the word list and their
frequencies of occurrence. The # item in the list tells how many
words. occur in the list, The output is an alphabetized list of
the, following format: '

285
a 132
b 024
d 028
e 094

etc.

That is, the Ilst contains 285 words, a occurs 132 tlmes,-h
occurs 24 times, and so on.

If any of the phones listed looks suspicious--as though it may
be an error in hearing, transcribing, or typinge--run "find examples"
(4.2.6) to find all examples of the suspicious phone, Before
running the program, use the immediate mode to replace the double
hyphen in the program with the character which is to be searched
for, When the program terminates, every word containing that
phone will be listed with its gloss in buffer 8. If this
investigation does lead to discovery of an error, make the change
in the word 1list,

In preparation for the 'phone co-occurrences' program, copy-
the list of phones which occur onto a blank phone co-occurrence
matrix as the row and column headings.

2.2s5% . Phone co~occurrences

Run ‘'phone co-occurrences” (4,2.3) to compile in buffer ?
a list of all the phone co-occurrences which occur in the word list
and their frequencies of occurrence. In the output table, the
double cross character, #, is used to represent a word boundary,
Thus, #-a represents word initial a and a-# represents word final
2. The output is an alphabetized Tist of the following format:

a~# 063
a=b 006
a-d 009
a~e 017
etc,

That is, a is word final 63 times, a is followed by b © times, and
50 On,.

15

The table of results should be copied into the blank co-
occurrence matrix prepared in 2.2.2. The first phone is the index
to the rows of the matrix, the second phone is the index to the
columns of the matrix, and the number of occurrences should be
copied into the cell at the interaction of the proper row and
column., By examining this matrix the user may discover the
complementary distribution of allophones of a single phoneme,
First compare the matrix rows of phonetically similar phones, If
a pair of rows shows complementary distribution (that is, where
one row has a filled-in cell, the other row has a blank one, and
vice versa), those two phones are variants of a single phoneme
which are conditioned by the following segment, Next compare the
matrix columns .of phonetically similar phones. If a pair of :
columns shows complementary distribution then the two phones are
variants of a singlé phoneme which are conditiomed by the
preceding segment. The co-occurrence matrix also provides infor-
mation on the consonant clusters which occur, the vowel clusters
which occur, and transition frequencies.

If any sequence looks suspicious.(for example, there is only
a single example which refutes a complementarity hypothesis or
a hypothesis as to the possible clusters that can occur) run
"find examples’ (4,2,6) to find all examples of the suspicious
sequence, The program is also used to extract a list of supporting
evidence for indluding in a write~up of the results. Before
running the program, use the immediate mode to replace the double
hyphen in the program with the two character sequence which is
to be searched for. If ‘word boundary is one of the characters,
it must be entered as CRLF, not as #. When the program teruminates,
every word containing that sequence will be listed with its
gloss in buffer 8. 1If in checking out the. examples any errors
are found, they should be corrected in the word list. If enough
errors are found, it may be of advantage to go back to 2.2.2,

2.2.4 Word shapes

The next program translates every word in buffer 4 into a
sequence of C's and V's (and any other appropriate symbols) in
order to study the internal structure of words, In addition, the
words are syllabified. DBefore the program can operate, the user
must enter the table for translating segments and the table of
syllabification rules.

The table of phone occurrences in buffer 5 is used as the
foundation for the translaticn table. TFollowing the first character
in each line of the table, insert the character into which the
first. character should: be translated. For the first run translate
all consonants into C and all vecwels into V. Special characters
should be translated to themselves--four instance, a stress mark
should remain a stress mark., Only word boundaries, #, may

16

translate into word boundaries. If additional word boundaries
are created, the "find examples" program will not work properly.
A sample translation table would appear as follows:

285
aV 132
bC 024
dCc 028
eV 094
etc,

The table of syllabification rules is entered into buffer 6,
First determine the rules that correctly place syllable breaks in
the words of the language., For instance, for the Biliau language
of Papua New Guinea the following three rules were used (Simons
and Simons 1977:5):

VeV — V.CV
VCC —3 VC.C

W=y V.V

The above rules are not ordered, If the rules for a language must
be ordered, be sure to put the first rule at the top, and so on,
To enter a rule into the table of syllabification rules,

first count the number of characters in the left part of the rule
and enter the number.. Next enter the left part of the rule. Then
count the number of characters preceding the syllable break

(the period) in the right part of the rule and enter the number,
Finally, end the rule with a CRLF. The proper form of the above
three roles is the following: :

3VCVl
3VCCe
2VVvl

Now run ‘word shapes" (4,2.4) to compile in buffer 7 a
table of all the word shapes that occur and their frequency of
occurrence. The output is an alphabetized list of the following
format: - '

CV 023
CV.CV 135
CV,CVC 043
CVC 054
etc.

That is, there are 23 words that are simply CV, 135 that are CV.CV,
and so on, :

17

The output is used to study the distribution of syllable
types within the word and to define the possible structure of
a word with respect to the syllable types and where they can
occur. If stress is marked in the transcriptions, the above
output will allow the user to study the distribution of stress
with respect to both syllable types and position in the word.

By rerunning this program (and the next) it is possible to
check out hypotheses about restrictions on the distribution of
phonemes and about allophonic conditioning factors that are related
to position in syllable, position in word, or placement of
stress. Before rerunning '"word shapes" it is necessary to first
run "extract list" and then "words alone", If it is suspected
that nasals, for instance, are the only consonants that can
close a syllable, change the translation table in buffer 5 to
translate the nasals into some unique character such as N, Rerun
the program. If the hypothesis is true, all cl osed syllables
will end . with N; none will end with C., If it is suspected that
the guality of vowels is conditioned by the placement of stress,
translate the vowel phones thought to occur in unstressed syllables
to U. Rerun the program to see if the distribution of U and V
is indeed conditioned by stress placement. If the distribution
of a particular phone is of special interest, translate it to
itself and rerun the program.

To find all the woerds which exemplify a certain word shape,
either to compile a list of supporting evidence or to check out
counter-examples to hypotheses, rurn "find examples® (4.2.6).
Before running the program, use the immediate mode to replace the
double hyphen in the program with the word shape which is to be
searched for. One can insert a whole word shape or part of one.
If a whole word shape is to be searched for, CRLF must be inserted
as the first and the last character of the search string., When
the program terminates, every word with that shape will be listed
with its gloss in buffer 8.

2.2.5 Syllable shapes

Run "syllable shapes" (4,2.5) to compile in buffer 7 an
alphabetized lis* of all the syllable types that occur along with
a count of their' frequency of occurrence. The double cross
character, #, is used to denote word boundaries. By using this
symbol, the table of results distinguishes between initial
syllables (eg. #CV), medial syllables (eg. CV), and final
syllables (eg. CV#). Syllables th~: are both initial and final
contain two #'s (eg. 7#CV#, a one syllable word). The table of

10

results has the following format:

H#CV 242
#V 043
CV 052
CV# 285

That is, there are 242 words which begin with a CV syllable,
43 wards begin with a V syllable, 52 words have a medial CV
syllable, and 285 woards end with a CV syllable,

As discussed in the previous section, this program is used
with "ward shapes" to test hypotheses about phoneme distribution
and allophonic conditioning., The "find examples" program is used
to compile in buffer 8 a list of examples of any syllable type.
Before running the program, use the immediate mode to replace
the double hyphen in the program with the syllable type which is
to be searched for. If an initial - or final syllable is to be-
searched for, CRLF must be entered in place of #, Any medial
syllable border must be marked by the period which is the symbol
for a medial syllable break, Thus, to find examples of medlal
CV syllables, replace the double hyphen with ",CvV," ,

2.3 Llexicostatistic analysis
2.3.1 Count cognates

Run "count cognates'" (4.3,1) to count the number of cognates
between every possible pairing of word lists in the master list,
The results are tabulated in buffer 4. The results are in the
following format:

092 BIL-BL2

075 BIL-GAL

054 BIL-GED
etc.

The first entry in the table of results states that there are 92
cognate forms between the BIL list and the BL2 list. The count
of cognates is the absoIute number of cognates. An electronic
calculator can be used to convert the numbers in the display to
percentages., Divide the number in the display by the number of
items in the word list and multiply by lOO.

19

2¢3¢2 Build a matrix of cognate counts

Run ‘build cognate matrix" (4,3.2) to convert the list of
cognate counts in buffer 4 into a matrix in buffer 6. The matrix
is square. The mnemonic identifiers are in the first row and
column and the diagonal is filled with asterisks. That is,

“** 'BIL. BL2 .GAL GED
BIL *** 092 075 OS54
BL2 092 *** 074 053
GAL 075 074 *** 056
GED 054 053 056 ***

24343 Permute the matrix of cognhate counts

Permuting the matrix of cognate counts (that is, changing
the order of the rows and columns) allows the user to see relatioms
between the dialects that might otherwise remain obscured if
the matrix were left in its original order. For a discussion of
matrix permutation in relation to.recognizing patterns of
divergence and convergence in a lexicostatistic matrix, see
Simons (19771), To permute the matrix of cognate counts,
run "permute matrix" (4.3.3). This is an interactive program.
The program begins by entering the immediate mode with the buffer
pointer at the beginning of the top row. Set the Aux pointer
(SAX command) to the beginning of the mnemonic identifier of the
column which is to be moved. That is, MFC to the proper
character and then SAX., Then set the buffer pointer to precede the
mnemonic identifier of the column in front of which the other
column is to be moved., Give the # command to return to program
control; the proper column\and,its corresponding row will be
moved to the desired position. After the move is . completed the
program displays the result and returns to the immediate mode.
Repeat the steps outlined above. to moveg another column and row.
To terminate the program, type # without moving the buffer
pointer from its position in the upper left hand corner of the
matrix.

20

2.4 Lexical isogloss analysis
2.4,1 Extract a lexical isogloss file

A lexical isogloss file contains only the cognate set
identifiers and the glosses from the merged master file, To
extract such a file, first insert a unique one character identifier
for each word list in front of the list's mnemonic identifier.

For example,
#ENG
aBIL
bBL2
cGAL
etc,

Then run "lexical isoglosses" (4,4.1) to extract a lexical
isogloss file into buffer 5 of the merged master file in buffer 2.
The Iexical isogloss file for the merged master file shown in
2.1.9 is as follows:

abcHENG

111#1. head

112#2. hair

© 122#3, nose

111#4. eye
etc.

If the isogloss file is to be saved on-tape, type a header‘block,
save the file, and delete the header block.

2.4.2 Analysis of Iexical isoglosses

The program ''isogloss analysis" (4.4.,2) aids the user's
study of lexical isoglosses in two ways. First, the program
sorts the file of lexical isoglosses. This puts all the word list
items with the same geographical distribution of cognates
together in the isogloss file., The original isogloss file shown
on the left, when sorted will appear as on the right.

ORIGINAL SORTED

abcdef g#ENG abcdef g#ENG
117111141, head 1111111#1. head
I121222#2. hair 1111111#3. nose
1111F11#3. nose 1111111#5. mouth
I111222#h, eye 1111222#4. eye
111111T#5. mouth 1111222#7. toath
1122222#6. ear 1121222#2. hair

1111222#7. tooth 1122222#6. ear

21

From the sorted isogloss file we sece that three items #1, #3,
and #5 do not differentiate the dialects and there is no
isogloss. Items /4 and #7 are examples of an isogloss distin-
guishing dialects a through d from dialects e through g. Item
#2 indicates an 1sogloss which dlstlngulsheo dialects a, b, and
from the other four dialects. Item # indicates an isagloss
separatlng a and b from the remaining dialects. From the
sorted’ 1sogloss flIe, the isoglosses can be drawn.directly onto
a map and’éach isogloss labelled with the numbers of the word
list items that ev1dence it.

io

The" second way in whlch the program can aid the analysis of
1soglosses is by allowing the user to change the order of the
word llsts in the 1sogloss file. For instance, by swapping the
order of dialect ¢ and dialect d in the .preceding example, the
isogloss pattern Tor #2 would become "I1I2222#2, halr", rather .
than the . orlglnal "1121222#2 halr" (The other six items
remain unchanged since ¢ and d are cognate-in all other items.)
Such 'a‘change, by puttlng all the like elements in an isogloss
pattern together, makes it easier for the analyst to see the
various isogloss patterns that occur. In general, the best orderlng
of the word lists puts the most closely related dialects in
adjacent spots. The best ordering can first be found by permuting
the matrix of cognate counts as in 2.3.3. In most cases the best
ordering will also be a geographical ordering.

To perform the analysis run "isogloss analysis" (4.4.2). The
program first allows the user to reorder the word lists, then it
sorts the file. The reordéring phase of the program is interactive,
The user achieves the desired order by moving lists one at a time
to the leftmost position. Any ordering of the lists is achieved
by moving the lists in the proper sequential order. The program
begins by going to the immediate mode with the buffer pointer
preceding the first character of the first line--the line of single
character identifiers for the lists. Use MFC to position the buffer
pointer.in front of the identifier for the list which is .to be
moved to the first position. Then type #. Execution returns to
program control and the column will be transferred to the initial
position and deleted from its original position. The result is
displayed and the program again goes to the ‘immediate mode. Repeat
the steps given above to move more lists. When the isogloss _
patterns are in the desired order, type # without moving the buffer
pointer from the front of the first line. The program will
then execute the sort routine, display the sorted file, and
terminate. Rurun the program to.explore other orderings of the
word. 1ists. If the user wishes to study the isogleoss. patterns of
only a subsct of the word lists, move those word lists to the
leftmost positions in the isogloss file and ignore the other lists.

22

2.5 PhonoStatistic analysis
2.5.1 Pre= program data formattlng

Before the phonostatlstlc analy51s may be made, the user
nust manually do some formatting of the merged master file in
buffer 2, The phonostatistics program compares cognate words
character by character and tabulates the degrees of difference
between corresponding phones. The purpose of the data
formatting is to ensure that the corresponding phones in
cognate words occur in the same position in the word. This is
done by inserting a slash where a phoneme has been lest through
a process of sound change. "here one word is longer than another
because it contains an additional morpheme, hyphens are inserted
into the shorter word. Using both slash and hyphen makes it '
possible to distinguish between differences in form due to
sound change and differences in morphology. After formatting,
all forms for a given word list item that are cognate (that is,
have the same cognate set identifier preceding them) must be of
the same length. Non-cognate forms are not compared and so
relative length is:immaterial, A correct formatting example
follows:

ORIGINAL : ’ FORMATTED
#68. snake #68. snake
1tofi 7 ltofi

" 1toi ' lto/i
2wata 2-=wata
ltohi 1tohi
2waa 2--wa/a
2wawaa 2wawa/a
loi : 1/0/i

To facilitate the insertion of slashes and hyphens, the
user should insert the following simple programs at the beginning
of buffers 1 and 2:

At the beginning of buffer 1: INS/$#
At the beginning of buffer 2: INS-$#

To insert a slash, position the buffer pointer to the point where
the slash is to be inserted and then given the command EXC., To
insert a hyphen, position the buffer pointer to the position where
the hyphen is to be inserted amd give the command 2EXC. Delete
the INS/§## and INS-$# programs before. proceedlng to-the next step.

23

2.5.2 Format checking

‘After the pre-program data formattlng is completed run
"check format" (4.5,1) to confirm that all cognate forms are
indeed of equal length. If any are not, the phonostatistics
program will not work properly. As the "check format" program
runs, the display is constantly changing as it steps through all
the pairs of words. If the program finds a pair of cognate
words that are not of the same length, the program will terminate
and return to the immediate mode. . The - display will show the
buffer p01nter following the message '"**ERROR**" which is
inserted into the word on which the length error occurred. The
Aux pointer is at the end of the other word being compared.
Press TRA to find the other word. Use the immediate mode
editing commands to remove the "**ERROR**" message and do the
proper formatting to equalize the lengths. Be sure to check
other words in the same cognate set, for it is likely that other

‘cognate words may be inyolved. Af% er editing is comple ted,
run the program again to check for more formatting erroérs.

If the program terminaters without an '"**ERROR**" message, the
file is properly.formatted. Type a header block and save the
formattéd file on tape. It will be needed again in 2. 7. Delete
the header block after -the file :is saved.

2.5.3 Enter the degrees of diffefence table

The approach to phonostatistics used in the Word List
Analysis Package is essentially the method which was devised
by Joseph Grimes (Grimes and Agard 1959, Grimes 1964) and
extended to application on comparatlve word lists by Howard
McKaughan (1964), In this method, corresponding phones in
cognate words are compared and scored gquantitatively as to the
phonetic “'degree of difference" between them. Identical phones
differ by zero degrees. Phones differing by a minimal feature
difference in only one phonetic dimension differ by one degree
of difference, and so on. Grimes and McKaughan specify each of
the phones in their corpus by numerically encoding their
phonetic "rank of stricture™ in each of a number of phonetic
dimensions. The degree of difference between correspounding
phones can then be automatically computed by comparing the
phonetic specifications of the two phones. Ladefoged (1968)
used a similar approach in which phones were specified by
generative distinctive features,

In a review of phonostatistic methods (Simons 1677a:177-9),
I have suggested that the best wmethod of assigning degrees of
difference to corresvonding nhones is for the linguist to
apply his experience with ‘he languages being compared, and with

24

language in general, to assign degree of difference in terms of
minimal steps of sound change. In many cases the rank of stricture
and distinctive feature approaches yield similar results, but in
some cases they do not. For instance, a change from bilabial

point of -articulation to velar point of articulation (which can be
a natural and minimal sound change where labiovelar consonamts

are found) is handled very naturally by the distinctive feature
approach asighange in the "anterior" feature., However, it
represents a high degree of difference in the rank of stricture
approach where alveolar and alveopalatal points of articulation
must be counted as intervening. Conversely, the rank of

stricture approach very naturally handles the change from

voiced dental fricative /&/ to semivowel /y/ to high vowel /i/

as minimal steps in the dimension of constriction of the air
stream, while in the distinctive feature approach these changes
require a messy reshuffling of many features-~consonantal, continuant,
vocalic, anterior, coronal, high, front. TFurthermore, there are
some common changes that neither approach can handle as a natural
and minimal change, for instance, /s/ to /h/ or /t/ to glottal
stop. (See Simons 1977a:177-9 for a more complete discussion.,)

In order to achieve the most natural assignment of degrees of
difference to sound correspondences, I suggest that the investiga-
tor compute degrees of difference in terms of minimal steps in
sound change. To do this, he must first compile a list of all the
sound correspondences in the corpus of data., He must then
examine the correspondences and posit the network of minimal-
steps which explain sound change in the corpus of data.. For
instance, given the correspondences, t:s, s:h, t:h, d:t, d:z, d:s,
and z:s, one would construct the following network of minimal
steps: : ’

The degree of difference between two phones is then the number of
arcs in the network that are traversed in going from the first
phone to the second via the shortest path., From the above network,
sample degrees of difference are:

h:h O t:t O :
st O t:is 1. :
s:h 1 t:h 2

2

cs ee e

S0 N
WMPOHHO

25

The program "check format' which has already been run in the
previous section, compiles a list of all the correspondences that -
occur in the merged master file. Tt does this at the same time
it is checking the format. After the program terminates successfully,
set the buffer pointer to buffer 3 to find the list of correspor-
dences. Each item in the list is only two characters, the two
corresponding characters, followed by a CRLF. The list is in
random order. In this package of programs, degree of difference
is assumed to be symmetrical, That is, the degree of difference
for d:t equédls the degree of difference.for t:d. Thus all
correspondences are given only once in @& normalized form--~the
second character will always be lexically equal to or greater
than the first. A sample list is as follows:

tt
aa
hs
st
ae
ht
dd
dt
etc.

From this list determine the network of minimal steps.
Then go through the 1list item by item and insert the degree of
difference measure for each correspondence following the second
character. That is,)

0.
aa0
hzl
stl
ael
hte
ddo
dtl
etc.

The format here is a general one, It does not require that a
minimal steps approach be taken, If the user prefers a rank of
stricture or distinctive feature approach, degree of difference
can be computed by those methods and then inserted into the list
as above, '

When the degrees of difference table is completely filled in,
type a header block and save the table on tape. It will be needed
again in 2.7. Delete the header block after the file is saved.

26

2.5.k4 Phonostatistics

Run "phonostatistics™ (4.5.2) to perform a phonostatistic
analysis of the formatted master file in buffer 2. Each pair of
lists is compared in turn. After each pair is compared, the
program goes to immediate mode with the results in buffer b,

After the results for that pair of lists are written down,

give the # command to return to program control and compute the
statistics for the next pair. The results appear in a table of the
following format

BIL~GAL
120
508
308
286
160
oh2
016
00k
000

VMEFWNOHOLGO s

The first line, BIL-GAL, tells that the following table is
the result of the phonostatistic comparison of the BIL Iist with
the GAL 1ist., The second line, w 120, tells that 120 cognate
words were compared. The third line, ¢ 508, tells that 508
corresponding phones were compared. The fourth line, 4 308, ‘tells
that the total degree of difference over the 508 correspondences
was 308, The remaining lines give a breakdown of the correspondences
compared and tell how many correspondences had O degrees of
difference, 1 degree of difference, and so on. Thus the sum of
lines O through 5 equals the figure for c, and the figure for 4
equals the sum of the products of degrees of difference and the
number of correspondences with that degree of difference, That is,
508 = 286 + 160 + 42 + 16 + 4 + 0 and 308 = (0x286) + (Lx160) +
(2xh42) + (3x16) + (kx k) + (5x0).

An electronic calculator can be used to convert these
statistics into more meaningful numbers for the sake of comparison,
Dividing ¢ by w gives the average number of correspondences
compared per word-~the average length of a word. Dividing d by ¢
gives the average degree of difference for corresponding phones.
Dividing d by w gives the average number of phonetic features that
are different (eg. degrees of difference) between cognate words.
The O through 5 lines can be made into more useful statistics by
converting them to percentages. This is done by d1v1d1ng each
by ¢ and multiplying by 100, When these are convertedAperceﬂtages,
the distributions of degrees of difference between various pairs

27

of lists can be compared. These computed statistics for the
above table are:

BIL-GAL
c/w = 4,23
d/c = 0.61
d/w = 2,57
Distribution of ¢ with respect to d:
0 56%

1 31%

2 8%

3 3%

4 1%

5 0%

The d/c measure between any two pairs is dlrectly comparable,
In order to use d/w to compare all the relations between lists, it
would be best to normalize all d/w scores to an average length of
word., ' If there is a variation in c¢/w (correspondences per word),
then variation in d/w will be related to variation in c/w as
well as to variation in the actual average degree of phonetic
difference between the lists. To control for the variation in
¢/w, first compute the average c/w. Thercompute the normalized
d/w by multiplying the corresponding &/c by the average c/w.
A simpler alternative would be to compute all d/w measures on
the basis of a word of modal- (rather than mean) length. That is,
if four character words are the most frequent in the languages,
then compute d/w on the basis of four segment words. That is,
d/w = d/c x 4,

To make phonostatistic measures more comparable to lexico=-
statistic measures, a phonostatistic measure can be converted to
a percentage, To do this it is necessary to determine the maximum
degree of difference possible for the given data., The percentage
of phonostatistic difference would ve the percentage of observed
degrees of difference out of the maximum possible degrees of
difference. The nercentage of phoncstatistic sameness is then
100 minus the percentage of phonostatistic difference. That is,
percentage of phonostatistic sameness (PS) would be defined by:

PS = 100 - ((&x100)/(cxmax))

For the above data, if max is detined as 5 degrees of difference,
the percentage of phonostatistic sameness is: :

100 - ((308 x 100)/(508 x 5)) or 88%

That is, the two lists are 88% phonetically similar in that only
12% of the phonetic features that could possibly be different are
in fact different. It must be remembered that this is the degree
of similarity between cognate words only.

28

2.6 Comparative method
2.6.1 Pre-program data formatting

Before the comparative analysis can be made, further
manual formatting of the data must be done., One must begin
with the formatted merged master file produced in 2.5.1.
The formatting in 2.5.1 was performed to ensure that all cognate
words were of the same length and that corresponding phones
were in the same position in the word. For the comparative method
there is an additional requirement that all the words listed
under a gloss must be of a single cognate set. There are four
cases to be dealt with, each of which is discussed in a paragraph
below: (1) all the words listed under a gloss are cognate,
(2) none of the words listed under a gloss are cognate and there
is nothing to compare, (3) the majority of the words under .a
gloss are in one cognate set with a few odd non-cognate forms, -
and (4) more than one cognate set is widely represented under a
single gloss and thus there is more than one set of forms to
compare,

(1) Where all the words listed under a gloss are cognate,
run "prepare a set" (4,6.1) to delete the cognate set identifiers
from before the words. Position the buffer pointer to the
beginning of the gloss (that is, preceding the #) and then set
the Aux pointer (SAX command)., Find the '"prepare a set" program
in the program buffer and run it. All cognate set identifiers
in that set of words will be deleted as in the following example:

#31, mountain #31, mountain

ltolo © tolo - '

“1tolo \ tolo

ltolu ’ \ tolu .

ltolo —— tolo

ltolo tolo

ltolo tolo

#32, sand #32. sand
etc. etc,

(2) Where the words listed under a gloss are not cognate
and there is no data to compare, run "delete a set" (4.6.2) to
delete the gloss and the complete set of words. Position the
buffer pointer to the beginning of the gloss (that is, preceding
the #) and then set the Aux pointer (SAX command). Find "delete
a set' in the program buffer amd run it. The result will be that
all lines from the Aux to the next # will be deleted. ’

29

(3) Where the majority of words under a gloss are in one
cognate set with a few odd non-cognate forms, run "prepare a
set™ (4.6.1) to delete all the odd forms so that only cognate
forms remain in the set, First position the buffer pointer to
the beginning of the gloss (that is, preceding the #). Then insert
the number of the cognate set that is to be preserved. Position
the buffer pointer to precede the number and set the Aux pointer
(5AX command). Find ''prepare a set" in the program buffer and '
run it. The result will be that any form not in the specified
cognate set will be replaced by a string of hyphens of the same
length as all forms in the cognate set. The string of hyphens
means that no coumparative data is available for that word, The
cognate set identifiers are also deleted. The number preceding
the gloss is preserved, however, This serves to identify the
following data set as to its cognate set identifier. For instance,

1#32. sand ‘I#32. sand
Ihone hone
1/one /one
2pususu -—"———"“—;i>z ———
1/one —s /one
3balo ———
1fone fone
#33, water - #33, water
etc. etc.

(4) Where more than one cognate set is widely represented
under a single gloss, run "cop; a set" (4,6,3) to make a complete
copy of the gloss and the words. Position the buffer pointer to
the beginning of the gloss (that is, preceding the #)vand then set
the Aux pointer (SAX command), Find '"copy a set'" in the program
buffer and run it. The result will be that the whole set of lines
from the Aux -~ to the next # will be copied and inserted at
the end of the current set, Then run "prepare a set'" as outlined
in (3) above to mrepare the different sets to exemplify different
cognate sets, For instance,

#33. water #33. water 1#33. water
1lkaho lkaho : kaho
Sefe oy eef® prepare K0
2tai ———————:2> 2tai —~—————~;> ———
2ted o 2tei ————
lkafo lkafo kafo
#34. fire #33. water 2#33%, water
etc, lkaho -
1lka/o prepare - -—
2tai =\ tal
2tai —) tai
2tei tedl
lkafo ——
#34, fire #34, fire

etc. etc.

30

2.6.2 Count correspondence sets

Run "count correspondence sets" (4.6,4) to compile a list

of all the correspondence sets that occur in the formatted master
file and count the number of times each correspondence set
occurs. Before running the program, first insert a
unique one character identifier for each word list in front of
the list's mnemonic- identifier, as illustrated previously in
2.,4.1, Then run the program. The results will appear in buffer 5
as a list of correspondence‘sets with their frequency of
occurrence. The first entry in the list is the unique one
character identifiers for the word lists, followed by htd (hundreds,
tens, digits) which label the columns of the frequency count,
For example,
o ' abcde htd

fffhf 006

00000 054

nnnnn Ol3

aaaee 008

etc.

That is, in six cases language 4 has /h/ where all the other
languages have /f/, and so on. “The correspondence sets are listed
in an unsorted order.

2,6.3 Phonological isogloss analysis

Under the heading of phonological isogloss analysis come all
the steps taken to analyze the list of occurring sound correspon~
dences and determine the regular sound correspondences., Two
programs are used: "isogloss analysis" (4,6,5) is used to reorder
the columns in the list of correspondences and sert the list, and
"find examples" (4.6,6) is used to find all the examples of a
particular correspondence.

In general, the regular correspondences will be those which
occur most frequently., In order to sort the list of correspondences
into the order of frequency, run "isogloss analysis" as described
nlready in 2,4.2. Four columns must be moved to the front in the
following order: (1) the space column preceding the numbers, (2) the
4 (digits) column, (3) the t (tens) column, and (4) the h (hundreds)
column. Then pass control to the sort routine,

Often it is helpful to sort all the correspondence sets with
respect to a particular reference language, or group of languages.
To do this, run "isogloss analysis' and move the desired language
or languages te the front before sorting. The result is that all
correspondences with the same phone in the reference language

31

will be listed together. Thus all correspondence sets with a

in the reference language will be listed first, correspondence

sets with b in the reference language come next, and so on. By
comparing the frequency of occurrence of all correspondences invol-
ving a given reference language phone, one can determine the
regular correspondence set involving that phoneme.

When more than one correspondence set for a single reference
langudge phoneme has a high frequency of occurrence, one must
look at all the examples of the correspondence sets to determine
if each of the different correspondence sets occurs in a different
environment, When writing up results, one needs to compile Iists
of supporting evidence. To extract examples of the correspondence
sets, run "find examples'". Before the program can be run, replace
the double hyphen in the program listing with the correspondencse
set to be searched for. Thus, to flnd all examples of the
to plaaaeeﬁ The cﬁa?a?terg in the correspondence set must follow
the order in which they appeared in the original results from the
""count correspondence sets'" program. Thus if the original order
of one character identifiers is abcde, then all correspondence sets
in the "find examples™ program must be entered in the order of
phone from language a first, then phone from b then ¢, then d,
and then e. Even if the "1sogloss analysis" program has been
used to reorder the languages in the correspon-
dence sets, the original order of the correspondence sets must be
used in the "find examples" program. The result of the "find
examples" program is a list din buffer 7 of the items which contain
the given correspondence set. This list contains only the number
and gloss of the item, not the actual data., The data can be found
by referring to a typed listing of the merged master file. In
the case where an item originally had more than one cognate set,
the cognate set identifier will precede the gloss of the item.
For instance,

1#15. hand
2#23, blood
#32. sand
1#61. two
#85. give

In this instance, five examples of the correspondence were found.
They occur in cognate set 1 of item #15 'hand', cognate set 2 of
item #23 ‘blood', item #32 'sand', and so on.

The correspondence sets will include the hyphen character
which means no comparative data were available for that particular
dialect and word. (Remember that the loss of a phone is signalled
by the slash.) -Thus a correspondence containing a hyphen is in -
general an incomplote example of one of the other complete
correspondence sets. The '"isogloss analysis" program, when it

30

sorts the list of correspondence sets, will list the incomplete
correspondence sets near the complete correspondence sets of
which they are only incomplete examples. To simplify the results,
the incomplete correspondence sets can be deleted and the
frequency counts for the complete correspondence sets which they
represent can be incremented accordingly.

When the regular correspondence sets have been determined,
the irregular correspondence sets should be deleted from the list
in order to prepare for the refined phonostatistics program.

From the list of regular correspondence sets which remains in
buffer 5, the phonological isoglosses can be extracted and drawn
on a map. That is, any correspondence set in which not all
members of the set are identical represents a phonological isogloss
and isogloss lines can be drawn on a map to separate the points
which have non-identical correspondence set members. If one
wishes to label isogloss lines with the numbers of the items which
exemplify the isogloss, run “"find examples' .to extract a list of
these items. As previously discussed in 2.2, the. results of
phonemic analysis should be consulted at this stage to determine
the correspondences at the phoneéemic level, Comparison of the
phonemic analyses of different dial ects may also yield differences
in allophonic manifestations of phonemes, distribution of

phonemes, or the structure of words and syllables. Such differences

can be included in the isogloss map.

It may be desirable to make a second isogloss map showing
the isoglosses defined by irregular correspondence sets., 1In
this case the irregular correspondence sets can be saved into
buffer 8 before deleting them from the main list in buffer 5.
To do this, set the Save pointer to buffer 8 by executing 8SBP
and then SSV, Before deleting a correspondence set from buffer 5
execute SVL to save it in buffer 8.

2.7 Refined phonostatistic analysis

After establishing the regular correspondence sets it is
possible to perform a refined phonostatistic analysis in which the
degree of phonological difference between cognate words is divided
into two components~-that portion of the difference which is due
to © regular sound eccrrespondences and that portion which is
due to irregular correspondences. The program requires three data
files: (1) Buffer 2 must contain the merged master file formatted
for phonostatistics which was saved on tape in 2.5.2. Buffer 2
must be cleared and the filc read from tape. (2) Buffer 3 must
contain the degrees of difference table produced in 2.5.3." ,
(3) Buffer 5 must contain the list of regular correspondence sets,

The

one character mnemonic identifiers in the first line of the file
of regular correspondences must be in the same order as the
mnemonic identifiers of the merged master file. If they are not,
run "isogloss analysis" to put the correspondence sets into the
proper order,

After the data files are in order, run "refined phonostatistics"
(4.7). Each pair of word lists is compared in turn. After each
pair is compared the program goes to immediate mode with the results
in buffer 4, After the results for that pair of lists are written
down, give the # command to return to program control and compute
the statistics for the next pair, The results appear in a table
of the following format:

BIL~GAL

104 016
488 020
274 034
286 000
148 012
038 ook
01k o002
002 002
000 000

UtEWhhiHt oo =

The first column represents.a tabulation of regular correspondences
and the second column of irregular correspondences. The rows have
the same meanings as in the '"phonostatistics" program (see 2.5.4)--
words compared, correspondences compared, total degrees of difference,
correSpondences with O through 5 degrees of difference. The first
row of the above table states that 104 of the words compared
contained no irregular correspondences, while 16 word did contain

at least one irregular correspondence. The sum of 104 and 16, that
is 120, is the total number of words compared (see the table under
2.5.4). The second row tells that 488 of the correspondences were
regular while 20 of them were irregular. The sum of 488 and 20,
that is 508, is the total number of correspondences compared (see
the table under 2.,5.4), The third row- ‘tells that the 488 regular -
correspondences account for 274 degrees of difference, while the

20 irregular correspondences account for 34 degrees of difference.
The sum of 274 and 34, that is 308, is the total degrees of
difference (see table under 2.5.4), The remaining rows of the

table are a breakdown of row ¢, giving the number of correspondences
regular and irregular with O through 5 degrees of difference.

- For the sake of comparison and interpretation, the figures in
the above table are best converted to percentage scores, This is
done by dividing each figure by the sum of the row (which equals the
figure given by the '"phonostatistics" program, see table under 2.5.4)

3L

and multiplying by 100, That is,

BIL-GAL

w 87 13
c 9% 4
d 89 11
0 100 0
1 92 8
2 90 10
2 88 12
4 50 50
5 0 o]

That is, 13% of the cognate words contain at least one irregular
correspondence. While only 4% of the correspondences are irregular,
they account for 11% of the phonological degrees of difference.
This 11% of degrees of difference due to irregular . correspondences
says that 11% of the sound change observed relative to the two
dialects does not conform to the classic Neogrammarian hypothesis
of sound change without exceptions. Determining the source of
this 11% discrepancy may prove significant for explaining language
change within the area of the language survey. A possible source
of discrepancy would be errors in the investigator's transcription
of the word list. If this is not thought to account for all the
discrepancy, two possible sources remain. (1) Borrowing may
account for irregular correspondences. In this case, some of the
forms counted as cognate are cognate only in a synchronic sense,
but not in a diachronic one, (2) Sudden phonological innovations
may account for the irregular correspondences. In this case the
classic model of a constant, gradual, exceptionless sound drift is
indadequate. There is something in the socio-cultural setting,
such as a practice of word tabooing, which wmotivates sudden
phonological change in individual lexical items (see for instance
Keesing and Fifi'i 1969:167-168).

3. THE PTP PROGRAMMING LANGUAGE

. The PI'P programming language is described in "A User's Manual
for PTP" (Simons 1977). Very briefly, PIP operates in two modes—-
an immediate mode and a program mode. In the immediate mode, stan-
dard text editing commands are executed and the results displayed
immediately on the monitor screen. In the program mode, predicates
and control structure are added to make a powerful programming lan-
guage. In this mode text processing is done automatically according
to a predefined program., Sectien 3.1 is a discussion of the changes
which have been made to PTP since the user's manual was written,
Section 3.2 gives a summary of PTP commands and special characters.
This is provided as a reference guide for reading the programs in

section k4.

35
3.1 Updates to the PIP user's manual

The following changes have been made: (1) addition of a
TRS (TRade Save) command, (2) change of INC (INCrement) command
and deletion of NUM (NCMber) command, (3) addition of indirect
addressing of arguments, and (4) addltlon of zero arguments.

(1) Trade Save = The TRS (TRade Save) command has been added.
It functions like TRA (TRade Ad‘y except that the buffer pointer and
the save pointer are traded. TRS is assigned in the u key.

(2) Change in Increment - INC has been rewritten to accept an
argument and to perform addition on a string of decimal digits
rather than a single byte. The NUM command is thus no Ionger
needed., The argument of INC can range from 0 to 255 and makes it
possible to do addition. For instance, 54INC will add 5# to the
current value of the number at the buffer pointer. The number is
a string of decimal digits (eg. O through 9) and the buffer pointer
must be positioned to precede the least significant digit. If a
digit is 9 and it is incremented, it is replaced with O and the
preceding digi t is incremented. The buffer pointer is not affected;
it remains on the least significent digit. Before initializing
a number (which is done by inserting a string of digits), the
programmer must determine what maximum value the number is likely
to reach. Then he must initialize the number with enough digits
to prevent an overflow. There is no limit to how many digits
a number may contain. -

(3) Indirect addressing of arguments - The k command loads
the number at the Save pointer into the argument reglster. k takes
an argument (1 to 3) which tells how many digits following the
Save pointer are to be read as the argument. Thus the command
2KMFL will read.t € two characters following the Save pointer into
the argumentregls "and then move forward that many lines. The
use of k is illustrated in the "phonostatistics® program (4.5.2).

(4) Zero arguments - A minimum argument of zero is now
allowed for the four move commands (MFC, MFL, MBC, MBL), the four
delete commands (DFC, DFL, DBC, DBL), and the 1ncrement (INC)
command. When a zero argument is given for these commands,
nothing happens. Therefare it is meaningless to type a zero
argument in a program. The zero ergument is encountered via the
k command (indirect addressing of arguments) where it is useful
in a variable argument for addressing the first row or column of
a table, or for indicating a case where nothing is to be added
to the count of results. : : : :

36

3,2 A summary of PTP commands and special characters

n represents that the command may have a numeric argument,
either digits or the k function. For moves, deletes,
INC, and EXC, O is minimum value; for all others it
is 1. Maxlmum is 3 for k, 16 for SBP and EXC,
255 for all others. _
t) represents an argument string of any length
BP an abbreviation for Buffer Pointer
nk indirect addressing of argument--the n digits following
the Save pointer are read as the argument
ncPC CoPy the n Characters followingAux to the BP (BP updated)
nCPL CoPy the n Lines following Aux to the BP (BP updated)
nDBC Delete Back n Characters preceding BP
nDBL Delete Back n Lines preceding BP
nDFC Delete Forward n Characters following BP
nDFL Del ete Forward n Lines foll wing BP
nEXC EXeCute the program located in buffer n; if n equals zero,
execute the program which begins at the BP
MM call the IMMediate mode processor from a program
nINC INCrement the number of which BP points: to the least
significant digit '
INS, ESC INSert the glven argument string into the buffer
" at the BP in the immediate mode
INS___ % INSert the given argument string into the buffer
at the BP in program mode
nMBC Move the BP Back n Characters
nMBL Move the BP Back n Lines
nMFC Move the BP Forward n Characters
nMFL Move the BP Forward n Lines
MON MONitor the current buffer
SAX Set the AuXiliary pointer to the BP

n3BP

SSV

nSVL
TRA
TRS_
cr
cv
cw
pa

npe

piy %
Pl

pm

nps, A

1"

37

Set the Buffer Pointer to the beginning of buffer n
Set the SaVe pointer to the BP

SaVe n Characters following BP to the save pointer
(save updated)

SaVe n,Llnes following BP to save pointer (save updated)

'EBa&e the Aux pointer and the BPk

TRade the §é?e pointer and the BP
Eassetteizead
cassette view
Eassetfe write
Does the aux pointer equal the BP?

Are the n characters following the aux pointer equal to
the n characters following the BP? :

Are the n lines following the aux pointer equal to the
n lines following the BP?

“is:the string following BP equal to the arguﬁent string?

Is the line following the aux pointer lexicall& greater
than the line following the BP?

Is there more left in the current buffer?

search for the nth 6ccurrence of the argument string
enter a procedure.
leave a procedure
Jjump to beginning of éurrent procedure and execute again

jump to end of current procedure, fall through right
parenthesis

on true, fall through; on false, jump to semicolon
terminate the current EXC or IMM command
balanced double quotes delimit a comment

form feed for cassette write--fill to end of blockwith iota

38

Lk, PROGRAM LISTINGS

In this section, complete program listings for all the
programs in the Word List Analysis Package are given., In the
introductory section far each set of programs, there is a guide
to the buffer assignments for that set of programs. In each
program listing there are two main parts --the listing and
a structured program description., In the program listings, the
spaces and CRLF's are .strictly for the purpose of making the
programs easier to read. In a text buffer, r ograms are stored in
compact format with no spaces between commands and no CRLF's and
indentations. Where a space is actually an essential part of the’
program (that is, it is a character in an argument string for
INS or a predicate) it is represented in the program listing as
an underline (__). Where a CRLF occurs in an argument string,
it is represented by a cent sign (¢). In the structured
program description, the PTP control structure is copied from
the program listing and filled in with prose statements which
give the intent of the commands and predicates.

The program code for the entire Word List Analysis Package
is 3¥K in length. The total workspace available for both programs
and data is I3K. In order to maximize the amount of workspace
available for the data, the Word List Analysis Package is stored
on tape in six load modules. These range in length from 325 bytes
to 750 bytes. The user selects the module for the phase of
analysis he is working on and reads in only those programs. This
leaves over 12K of workspace available for data at all tires.
The organization of the modules and their lengths is as follows:

Sections for

Name listings Length in bytes
Input ’ Lo, 325
Phonemic analysis L,2 750
Lexical analysis L,3 and 4.4 - 700
Phonostatistics k.5 600
Comparative method 4,6 600
Refined phonostatistics 4.7 _550

TOTAL LENGTH : 3525 bytes

39

4,1 Input

The buffer assignments for the input programs are the following:

Buffer 1 - Programs

Buffer 2 - Gloss file; merged master file for "merge lists"

Buffer 3 - Combined word list and gloss file; the list being
merged in for '"merge lists"

Buffer 4 - Word list alone ' :

Buffer 5 -~ Prompt question "more or no?" for "merge lists"

Buffer 6 - nnMFL# subroutine for "merge lists"

L,1.1 Copy 2 to 3

“"copy 2 to 3¢
(3SBP SSV 2SBP
(pm? SVL MFL MON:3;) 3SBP)#

4,1,2 Extract list

"extract list"
(48BP (pm? DFL:;) SSV
3SBP (pm? MON
(pi#$? MFL MBC SVC MFC; SVC MFC:) :3)
LSBP)#

((Clear buffer four) Set the Save pointer to buffer 4.
Go to buffer 3 to extract the word list from the combined 1list,
(More?
(Have we reached the gloss yet? Move to the next entry.
Save the CRLF at the end of the preceding entry;
No, save the character and advance to next:) :3)
" Display results in buffer 4.)

4L,1.3 Zero 3

"ZeI‘O 3"
(3SBP (pm? MON DFL:;))#

40

L,1.,4 Merge glosses into list

‘merge glosses into list":
(2SBP SAX 3SBP
(pm° MON
. (piede DFC CPL TRA MFL TRA; MFC: Yis)
3SBP)#
(Set Aux to the gloss file. Set BP to the word 1list,.
(More in word 1list? ' ' :
(End of the word? Yes, delete CRLF, copy gloss, and
advance to next gloss in gloss filej; No, next character:)
:3) Display result in buffer 3.)

4,1,5 Merge lists

"merge lists"
(6SBP INSOOe#$ 5SBP INSmore or no?$
2SBP INSglosses$ MBL ¢v DFL MON c¢r DBL
(55BP IMM pimored? 3SBP INSview$ MBL cv DFL MON cr DBL
6SBP MFC INC 3SBP SAX 2SBP o
(pm? MON 6EXC CPL TRA DFL TRA:;):3)
SSBP DFL 6SBP DFL 2SBP
(pm? MEL:;) INs#¢ﬁ
2SBP)#

(Initialize the nnMFL# subroutine. Initialize the prompt
question. Read the gloss file into buffer 2. _
(Merge another file? Read it into buffer 3. Increment the
nnMFL# subroutine.
(Merge the list in buffer 3 into the merged master file
in buffer 2.):3)
Clear buffers 5 and. 6. o v
(Find the end of the merged master file.) Append #¢ as end
Display results in buffer 2.) marker.

4,2 Phonemic analysis

The buffer assignments for the phonemic analysis programs are
the following:

Buffer 1 - Programs

Buffer 2 - Gloss file

Buffer 3 - Combined word list and gloss file

Buffer 4 - Words alonej translation of words to CV shapes
Buffer 5 - Phone occurrences count; CV translation table
Buffer 6 - Syllabification rules

Buffer 7 - Results buffer .

Buffer 8 - Extracted list of "find examples"

L1

4,2,1 Words alone

"wards alone"®
(4LSBP DFL
(pm? DFC MON MFL:;)
LSBP)# ’

(Delete the mnemonic identifier.
(Delete the cognate set identifiers.)
Display the results.)

L,2.2 Phone occurrences

"phone ocgurrences"
(5S8BP (pm? DFL:;)
4SBP (SAX MON 5SBP
(pe? YMFC INC; 6MFC pm?:3; CPC INS 00le¢$)
TRA MFC pm?:;) -
5SBP (pi¢#? DEC INS#$; MFL:)
5SBP (SAX 5SBP
(pa? MFL; pl? MFL:; CPL TRA DFL)
MON pm?:3;)
5SBP)#

((Clear .the results buffer.)
Set BP to data buffer,
(Set Aux to current character in data, BP to results buf.
(Is this the curremt character?
Yem, move to the count and increment;
No, move to next entry. More in table? Yes, repeat:
No, make a new entry. Copy character and
initialize count to 001.)
Return to data and advance to next character. More date?:;)
(Change CRLF in table to #--a printable character.)
(Sort the table into alphabetical order of the phones.
See PTP user's manual, section 6.1.2.)
Display the results in buffer 5.)

b ..

L,2,3 Phone co-occurrences

"phone co-occurrences'
(7SBP (pm? DFL:;)
LSBP INS¢$ MBC
(SAX MON 7SBP :
(2pe? SMFC INC; 7MFC pm?:; 2CPC INS 001¢$)
TRA 2MFC pm? MBC:j) R
4LSBP DFC 7SBP o
(pm? (pi¢$? DFC INS#$ MFC) INS-§
(pi¢$? DFC INS#$;) MFL:;)
7SBP (SAX 7SBP
(pa? MFL; pl? MFL:; CPL TRA DFL)
MON pm?:3)
7SBP)#

The structured program description is the same és for the
previous program. The main difference is that the entries.
in the results table are two characters instead of one.

L,2.4 Word shapes

"word shapes"
(7SBP (pm? DFL:;)
LSBP (SAX 5SBP
‘ (pe? MFC TRA CPC DFC MON; MFL:) (pie¢$? MFC;) pm?2:3;)
LSBP (SAX 6SBP SSV MFC TRA pm?
(kpe? TRA kMFC SSV TRA KMFC INS.$;
TRA MFL pm? SSV MFC TRA:; TRA MFC): i)
LSBP (SAX MON 7SBP
(pf? MFL 2MFC INC; 2MFL pm?:; CPL INSOOle$)
TRA MFL pm?:3)
7SBP (pm? MFL DBC INS_3% MFL: ;)
73BP (SAX 77SBP ,
(pa? MFL; pl? MFL:; CPL TRA DFL) .
MON pm?:3) .
7SBP)#

((Clear the results buffer.)
(Set Aux on data character and BP at beginning of translation
table. (Find the character in the table and translate it.)
(If the character is CRLF, let it be.) More data?:3)
Syllabification. (bet Aux on rules, BP on data. More data?
"(Does Ieft part of rule fit on current data?
Yes, insert the syllable break;
No, more rules? Get next rule:;
Advance to next character in data): 3)
(Count word shapes. Table entries are two lines, shape and count.)
(Format the results. Reduce two lines to one line.)
(Sort the results buffer) Display results.)

43

4,2,5 Syllable shapes

"syllable shapes'
(78BP (pm? DFL:;)
LSBP INS#$
(ps¢$? DBC INS#H.#8:3)
LSBP (SAX ps.$? MBC INSg§ 7SBP
(pf? MFL 2MFC INC; 2MFL pm?:; CPL INSOO1¢$)
TRA ps¢$ DBC MFC:j)
LSBP DFC
(ps#.#82? 3DBC INS¢H:s)
?SBP (pm? MFL DBC INS_§ MFL:;)
7SBP (SAX 7SBP
(pa? MFL; pl? MFL:; CPL TRA DFL)
MON pm?:3;)
7SBP)#

((Clear results buffer.)
Put an initial word boundary at beginning of data.
(Replace all CRLF's with #.#-~word final, syllable break,
word initial.)
Go to beginning of data.
(Set Aux at beginning of current syllable. Find next
syllable break and insert CRLF before it, so we can use
pf for searching in the results table. Got to resulk table.
(The table entries are two lines. First line is syllable
shape, second is count. Tabulate the current syllable)
Go back to data and delete the CRLF, Next syllable:;)
Delete the initial word boundary at the beginning of the data.
(Replace the #.#'s with CRLF's.)
(Format Results. Reduce two line entry to one line.)
(Sort results by alphabetical order of syllable shapes.)
Display the result buffer.)

L,2,6 Find examples

"find examples"
(8SBP SSV 3SBP MFL SAX L4SBP
(pm? (pi¢$? TRA MON MFL TRA;)
(pi--$2? TRA SVL TRAj;)
MFC:3;)
8SBP (pm? DFC MON MFL:;)
8SBP)# |
(Set. Save to result buffer. Go to combined word list/gloss file,
move past mnemonic identifier, and set Aux. Go to data buffer.
(More? (Is character CRLF? Go to combined file and advance linej;)
(Found an example? Go to combined file and save example;)
Advance to next character in data buffer:;)
(Strip cognate set identifiers from examples in result buffer,)
Display results in buffer 8.) :

b

4,3 Lexicostatistic analysis

The buffer assigniments for the lexicostatistic analysis
programs are the following:

Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer

- Programs

- Merged master file

= Unused

Table of cognate counts
- Unused

= Cognate matrix

- nnMFL# subroutine

1

4,3,1 Count cognates

"count cognates™
(4SBP SSV 28BP MFL
(pi#8?; SAX (MTL MON pi#$? TRA MFL; TRA SVL TRA SVL:):)

LSBP
%, (pm? INSO00- ¥ ps¢h DBC INS-$ MFL--)
ggr“~ = (4SBP SSV TRA MON MFL pr°
} & K (pi##?; SAX
o (MFL pi#$? VRA MFL;
A (pe° TRS 2MFC IIC; TRS) MFL TR3:):):3)
LSBP)#

(First put the mnemonic ideantifiers for each pairwise comparison
into the result buffer. Set Save to result buffer. Set BP
to merged master file and advance past gloss file mnemonic,
(End of mnewonics?; Set Aux to civront mnemonic, then compare
it tb» 771 +he remainihg mnemonics.
(Advance to next mnemonic. End of wnemonics?

Yes, go back to current mnemonic and advance itj
No, save the two mnemonics into the results buffer:):)

(Format the results table. Insert the initialized count 000

as first item in each entry. Put a hyphen between the two
mnemonics or the lists being compared in that line,)

(The cognate countins follows the same basic strategy as the
routine above for copying the mnemonics into the results
buffer. Tach word list item is taken in turn with the next
gloss, #, being the end mark for an item. The lists are
compared in a lower triangle fashion in the same order as the
mnemonics were ccpied into the results buffer, If the cognate
set identifiers for two words are the same, the count is
incremented. In either case, every time a comparison is made,
the Save p01nter is advanced to the next entry in the results
buffer.)

Display the table, of cognate counts.)

45
4,3,2 Build cognate matrix

"build cognate matrix" A
(78BP INSOOe#{ 6SBP INS¢# SSV
2SBP MFL -
(pi#%?; SVL MFL:)
4SBP 4MFC
(pm? SAX 7SBP MFC INC TRA SAX 6SBP MON 7EXC SSV TRA SAX
(MBL TRS 2MFL MBC TRS 3SVC MFL U4MFC 3pe?:;):;)
6SBP INS***$ SSV 2SBP MFL (pi#$?; 3svc MFL:)
LSBP 4MFC
(SAX TRS 2MFL MBC INS***$ SSV TRA SAX
pm? (MBL 3SVC MFL AMFC 3pe?:3):3)
6SBP
(pm? (3MFC TNS '3 pies? MFCy:)ey)
7SBP DFL 6SBP)# ~

(Initial ize the nnMFL# subroutine, Insert a CRLF to terminate the
first row of the matrix. :
(Copy 21l the mnemonics as separate lines--first item in eachrow)

(Fill in the figures for the lower triangle by columns left toright.

First increment the nnMFL# subroutine. This routine is used to
specify the row in which the next column begins.

Execute the nnMFL# subroutine to set Save at the proper row for
beginning the column. Aux is set to the mnemonic for the
column in the cognate count table in &4,

(As long as the first mnemonic in the cognate table equals
the mnepmonic for the column, copy the number of cognates
at the end of each row.)) ’

(Copy the mnemonics from buffer 2 to fill in the first row.)

(Now £il11 in the diagonal and the upper trlangle from left to
right and top to bottom.

(As long as the first mnemonic in the cognate table equals
the mnerionic for the current row, copy the figures.))

(Insert -a space between all the columns.))

4,3,3 Permute matrix

"permute matrix"
(7SBP INSOOs#%
6SBP (SAX 7SBP MON MFC INC TRA pie$?; MFC:)
(63BP IMM pi*$#?; INS$$ TRA INSo§ 6SBP SAX
(TRA MFL TRA -MFC 3pe?:; TRA SSV TRA MFC)
(TRA MFL TRA 4MFC 3pe?:; (pio®?; TRS TRA TRS) TRA SVL DFL)
6SBP (4MFC pioc$? SSV DFC psé$ DBC TRS
(L SVC LDFC 7EXC TRS 7EXC TRS pm?:3);
pié$? SSV DFC pss$ DBC
(4SVC 4DFC LMBC 7EXC TRS 4MBC 7EXC TRS pm?:;);:):)
7SBP DFL 6SBP)#

L6

(Initisl ize the nnMFC# subroutine,

(Increment the nnMFC# command for every character in a row

of the matrix., That is, set the argument of MFC to the
number of characters in a row of the matrix,)

(Set BP to upper left corner of matrix. Go to immediate mode.
Terminate?; Inseet delta for destination at BP, Insert
sigma for source at Aux., Move the source row to destination.

(Find the row corresponding to the first column marked as
source or destination and set Save pointer at it,
3pe fails when the first sigma or delta is found)
(Find the row corresponding to the other column involved.
(Is it the source row?; Trade the Save pointer)
Save the source row to the destination and delete it.)
—> (Now move the source colunmn.

Advance to next column. Is it the source column?

Yes, find the destination column., Set Save to destination
and BP to source. (Move the source column row by row. Save
the four characters, three digits and space, and then
delete them. Move the Save and BP to the corresponding
place in the next row by executing the nnMFC# subroutine)

"No. Is it the dcstination column?

Yes, set Save, Find source column and set BP,
(Move sourcé column row by row. Save the four characters
- and delete them, To move pointers to corresponding
~ place in next row, first move back 4 characters to
gompensate for the deleted characters, then execute 7);
No:
Go back to immediate mode to display results and do it again:)
Clear buffer 7)

L,4 ZLexical isogloss analysis

The buffer assignments for the lexical isogloss amalysis
programs are the following:

Buffer

Buffer 1 - Programs
Buffer 2 - Merged master file
Buffer 3 ~ Unused
Buffer 4 - Cognate counts
Buffer 5 -~ Lexical isogloss file
Buffer 6 -~ Cognate matrix

7

- nnMFC# subroutine

b7 v&“é

: u‘?QL’
L.bh,1 Lexical isoglosses W) -“.,\F\?Nj »‘fﬂk%
)
"lexical isoglosses
(55BP SSY, 25BP
(pm? n(pl#g'> SVL;) MFL:; TRS DBL)
5SBP SSV 28
(MFL pm?"(SVC MFL pi#$? TRS MFL TRS;:):;)
5SBP)# A

(Set Save to buffer 5, set BP to merged master file.

(On the first pass through the data save all the gloss entries.
After all the glosses are saved,delete the last one which
was only the end marker, #¢.)

Reset the pointers.

(On the second pass through the data, save all the cognate

set identifiers in order in front of the proper gloss.)
Display the results.)

L,4k,2 Isogloss analysis

"isogloss analysis" _
((58BP SAX IMM pa?; SAX 7SBP INSOOAd#$ 3MBC SSV 5SBP
(pa?; TRS INC TRS MFC:) , wﬁn?
5SBP m? MON SSV 7EXC SVC DFC MFL:3;) 7SBP DFL:) «" ‘xd?
5SBP INSx$ MBC '
(SAX 5SBP
(pa? MFL; pl? MFL:; CPL TRA DFL)
MON pm?:3)
S5SBP DFC)#

(First put the lists into the desired order.
(Set Aux to beginning of isogloss file amd go to immediate mode.
Is the user through moving lists? Yes, go to sort;
No, initialize an nnMFC# subroutine.
(Set the nn in subroutine equal to the number of lists in
front of the one being moved.)
(Go through the whole isogloss file saving the
element from the proper list to the front of the "line and
deleting it from its original position.)
Zero the nnMFC# subroutine and go bgck to beginning:)

Sort the isogloss file. First put an alpha in front of the
first line containing the one character identifiers for the
Iists. This ensures that the identifier line w111 be the
first line in the sorted file,

(Sort the file.)
Delete the alpha and display the results.)

48

Lb,5 Phonostatistic analysis

The buffer assignments for the phonostatlstlc analysis
programs are the following:

Buffer 1 - Programs .
Buffer 2 - Merged master file (formatted)
Buffer 3 - Degrees of difference table
Buffer 4 - Results for each pairwise phonostatistics
_ comparison
Buffer 5 = Alternated word list for two lists being compared
Buffer 6 - nnMFL# subroutine

445.1 Check format

Ycheck format"
(6SBP INSOQe#$ 3MBC SSV 2SBP (MFL TRS INC TRS pi#g?s:)
3SBP (pm? DFL:3)
5SBP SSV 2SBP MFL
(INS**§ pi#$? 2DBC;

(2SBP ps*$ SAX ps*$ DBC MFL INS*$ pi#$? DBC 2SBP ps*$ DBC MFL;

(TRA 6EXC TRA 6EXC pm?
(pe? TRA MFC TRA MEC
((pl? TRA;) TRA SVC pig#? TRA
(pi¢$?; SSV 3SBP (pm? DFL:;) SSBP (pm? DFL:;)
6SBP DFL 2SBP ps*$ DBC ps*$ DBC
TRS INS**ERROR**$ IMM)
SVC; MFC TRA SVC MFC:)3;) MON:;)
5SBP
(SAX (pie¢#?s pi-$72; MFC pi-$? MBC; MBC pi//8$7:
Y 3SBP {2pe?; 2MFC pm?:; 2CPC) TRA) 2DFC MON pm?:;)

”?
3SBP (pm° 2MFC INSgd:s)
6SBP DFL 2SBP)#

(Initialize an nnMFL# subroutine.

(Set nn to number of listsincluding the gloss list.)
" (Clear buffer 3.)

Set Seve to buffer 5 far the alternated word llst. In the
alternated list, the two word lists are &l ternated character by
character as they are saved. That is, first a character from
Iist one, then a character from list two, one from list one, one
from list two, and so on. The result is a series of sound
correspondences.,

Go to beginning of merged master file., Advance past mnemonic
for the gloss file. In the following routine, asterisks are
used to mark the mnemonic identifiers of the last two lists
which were compared.

L 4

»

49

(Insert **. Have we done all pairs? Yes, delete **, Exit;
(Set Aux to first * and advance the second *.
Is it to end of mnemonics? Yes, delete second *,
Find first * and delete it. Advance to next mnemonic;
No, extract an alternated file of the current two lists.
(Advance to next pair of words., More in file?
(Are the forms cognate? Move past cognate set IDs,

((We want to store only a triangular matrix since
degrees of difference is symmetrical, Set Aux
to the character that is lexically greater.)

Save the first character., Is it CRLF?

YES, (Is other character CRLF? Yes, go ahead;

No. Formatting error. Clear buffers 3,

5, and 6, Delete *'s from buffer 2.

Insert **ERROR** message. Call immediate
. mode to terminate,)

Advance to next character, ©Save and advance

second character.:)s):;)

Alternated list is in buffer 5. Now look up all the sound
correspondences to make sure they are in the degrees of
differcence table listing.
((Take a correspondence from the alternated list.
If it is end of word, contains a -, or // there ism
no correspondence. Is it no correspondence?;
(Look up the correspondence in the list in buffer 3.
If it is not there, add it.)j;)
Delete the correspondence from alternated file. Advance.
') More correspondences to look up?:;)
(Insert a CRLF after every correspondence in the table in 3)
Clear buffer 6 and display the merged master file.)

L,5.,2 Phonostatistics

'phonostatistics" '
(6SBP INSOOe#$ 3MBC SSV 2SBP (MFL TRS INC TRS pi#f?;:)
2SBP MFL
(INS**$ pi#8? 2DBC; -
(2SBP ps*$ SAX ps*$ DBC MFL INS*$ pi##? DBC 2SBP ps*$ DBC MFL;
SSV 4SBP TRS TRA SVL TRS DBC INS-$ TRS TRA SVL SSV 5SBP. IRS
(TRA 6EXC TRA 6EXC pm?
(pe? TRA MFC TRA MFC
((p1? TRA;) TRA SVC pig¢$? TRASVC; MFCTRA SVC MFC:);)
MON::)
LSBP MFL INSw_000¢c_000¢d_000¢0_000¢1l_000¢2_ 000¢3_000¢
4k 000¢5 0004% S5SBP _ ,
T (SAX (pi¢®? 4SBP MFL 4MFC INC; pi-$7?; MFC pi-$? MBC; MBC pi//3%;
33BP (2pe? 2MFC SSV 4SBP 2MFL 4MFC INC 6MFC kINC
MFL kMFL 4MFC INC; MFL:))
TRA 2DFC MON pm?:3)
LsBP IMM L4SBP 10DFL:):) 6SBP DFL 2SBP)#

50

The initialization routine and the basic structure of the
program are the same as the 'check format" program. The fifth
line is completely new. It puts the title line into. the results.
buffer, eg. MNE,-MNEo¢. The alternated word list for each pair of
lists is extrac%ed into buffer 5 as =~ before. The code for
the look up and result counting is new. A description is
as follows: - ‘

Initialize the results buffer.
((Get next correspondence. Is it end of a ward?
- Count a word in the results buffer;
Is first character ~?; Is second character =73 Is it //?3
Look up correspondence in the degrees of difference table.
(Found? Increment correspondence count. Increment sum of
' d. of d. count. Go to line for k d. of d. and increment;
-No, advance to next entry in d. of d. table:))
Delete current correspondence. More?:;)
Display results in immediate mode., Zero results buffer on
return to program control.. Go back and do next pair of lists.

L.,6 Comparativé methad

Buffer assignments for the comparative method programs are
the following: .

Buffer 1 Programs : ‘ :
Buffer 2 - Formatted merged master file; reduced to a list
" of glosses only in '"count correspondence sets"

Buffer 3 - Degrees of difference table remains

Buffer 4 - Alternated list for all of the individusl Iists

Buffer 5 - Count of correspondence sets

Buffer 6 = nnMFC# subroutine for 'find examples" and
"count correspondence sets"

Buffer 7 ~ nnMFC# subroutine for 'isogloss analysis"

Buffer 8 - Extracted list of examples for "find examples"

4L,6,1 Prepare a set

"prepare a set!
(TRA pi#8? (MON MFL pi#$?; DFC:); ’
SAX (MFL pi##$?; (pe? DFC; (DFC pie#i?;:)):)
TRA SSV (MFL pi¢$?:; SVL)
TRS MBL (pi¢$?; DFC INS-$:) }
MBL SAX 2MFL (pi#$?; pie$? CPL DFC:; MFL:)
TRA DFL TRA)# : : ,

.-

51

(Is there no cognate set identifier?
Yes, (Delete all cognate set identifiers for the set.):
No, there is a cognate set identifier. Set Aux to the ID.
(Advance to next line. ZEnd of set?;
(Is this word in the right cognate set? Delete identifier;
No, (Delete word, leaving only CRLF)):)
Set Save to precede the gloss.
- (Find first word in the set which is the proper cognate set..
Save the word,)
(Convert the saved word to a string of hyphens. This gives
a string of hyphens the same length as all words in the set)
Set Aux to string of hyphens. Move to first word entry.
(End of set?; Is the entry CRLF only? Copy the string of
hyphens and delete the CRLF:j Advance to next entry:)
Delete string of hyphens. Set BP to next gloss.)

4.6.2 Delete a set

"delete a set" :
(TRA (MON DFL p1#3?) #

(Delete all the lines between Aux and the next #.)

L,6.3 Copy a set

"copy a set" ‘
(TRA SSV. (MFL pi#8?;:)
TRS SAX (MON SVL MFL pi#8?;:) TRA)#

((Find the end of the set.) Set Save to end of set.
(Save the set.) Set BP back to beginning of original set.)

L,6.k Count correspondence sets

“count correspondence sets"
(5SBP 35SV ,2SBP
(MFL (pi#?; MFC pi#$?; MBC)? TRS INS_htde¢$ TRS; SVC:)
SSV 4SBP TRS
(MON MFL pm?
(SAX (SVC DFC MFL (pi#$?; MFC pi#$?; MBC)?;:)
TRA pi¢$? SVC (DFC p1¢$ $)5:):3) :
68BP INSQOd#$ 3MBC SSV 2SBP
(DFL (pi#$?; MFC pi#$?; MBC)?3 TRS INC TRS:)
6SBP SSV 4SBP
(SAX MON 53BP
(2kpe? 2kMFC 3MFC INC; MFL pm?:; 2kCPC INS; 001¢$)
TRA 2kMFC (pig¢$? MFC;). pm?:;)
5SBP)#

52

The program makes use of a compound predicate--
(pi#$?; MFC pi##?; MBC)? =-=to find the end of a set. After
formatting, the gloss line may begin with # or it may begin with
a cognate set identifier in which case the # is the second
character. The compound predicate tests for a # in the first or
second position. On falling through the right parenthesis, the
predicate register contains the truth value of the last predicate
which was executed. Thus the compound predicate will return true
if.the # was found, false otherwise.

((First put the line of one character 1dent1f1ers into result buffer)
Extract the alternated list.
(Move to ‘first word in a set. More data in file?
" ((8ave and delete first character left in each word.
Makes a correspondence set in'the alternated list.)
Are we to ends of the words? Save one CRLF then delete
them all.; Go back and save another correspondence:):;)-
Initialize a nnMFC# subroutine. The subroutine is used in
"find examples'. The nn number only is used in this program
with the k command. (Set nn to number of lists.)
Count the correspondences. Set Save onnumber.of 1:stg BP
on gl ternated list.
(Set Aux on alternated 115t Go to results buffer.
Look up the current correspondence,
(Found? Increment count; advance in table. More entries:;
Copy the correspondence into the table and init oount)
Advance to next correspondence
(If next character is CRLF move past it) More data?:3)
Display results,)# :

4,6,5 Isogloss analysis

This program is identical to the "isogloss analysis" program
in 40"{"20

4,6.6 Find examples

"find examples”
(8SBP SSV 2SBP SAX L4SBP
(pm? (pi--$? TRA SVL TRAj;)
6EXC (pig¢$? MFC TRA MON "MFL TRA;):3)
8SBP)#

(Set Save to result buffer. Set Aux to list of glosses.
Set BP to alternated list.
(More in the list? (Is this an example of the correspondence?
Go to gloss list and save examplej)
Advance to next correspondence. ‘) . -
(Is it CRLF? Advance past it, and advance a Iine in gloss files)
:3)
k]
Display results in buffer 8)

B

’E‘t

53

4.7 Refined phonostatistic analysis

The buffer assignments for the refined phonostatistics

program are

Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer

Buffer

Buffer

the following:

1 - Prograns
2 ~ Formatted merged master 1list
3 - Degrees of difference table
L -~ Results for each pairwise phonostatlstic comparison
5 = File of regular correspondences
6 - Alternated word list for the two lists being compared
7 = List of regular correspondences for the two lists
8 - nnMFI# subroutine, where nn is number of lists plus one
9 - nnMFC# subroutine, where nn is the number of
characters in a correspondence set entry in 5
10 - A 4MFC# a 8MFC# subroutine. This subroutine is
used to position the BP to the proper column in
the results table--UMFC for regular, 8MFC irregular
I1 - Flag for signallling whether or not a word contains
any -irregular cofrespondences, The flag is
* initialized to zero before each new word, Any
time an irregular correspondence is encountered
the flag is incremented.

"refined phonostatisties®
(8SBP INSOOe#$ 3MBC SSV 2SBP (MFL TRS INC TRS pi#$?;:)
9SBP TR3 MBC zSVC TRS MBC 4INC MFC INSd## 10SBP INSOd##
I1SBP INSO$ S5SBP INS**$ 2SBP MFL
(INS**§ pi#$? 2DBC 53BP ps*$ DBC ps*$ DBC;
(2SBP ps*$ SAX ps*$ DBC MFL INS*$ p1#$° DBC ZSBP ps*$ DBC MFL;
SSV 4SBP TRS TRA SVL TRS DBC INS-$ TRS TRA SVL 5SSV 6SBP TRS

(TRA 8EXC TRA 8EXC pm?

(pe? TRA MFC TRA MFC
(TRA SVC pie$? TRA SVC; MEC TRA SVC MFC:);) MON:;)

7SBP SSV

(55BP ps*$ SAX ps*$ DBC MFC INS*$ pi_ $?
DBC MBL ps*$ DBC MFC INS**§$:; TRA MFC TRA
(TRA 9EXC TRA 9EXC MON pm? TRA SVC TRA SVC:;))

LSBP MFL INSw_000_000¢c_000_000¢d_000_000¢0_000_000¢
1 _000_000¢2_ 000 OOO¢3 000 OOO¢4 000 OOO¢5 Q00 OOO¢3 6SBP

TSAX (pie$7? 4SBP MFL L4MFC SSV 1ISBP
(piO$? TRS; DFC INSO$ TRS 4MFC) INC;
pi-#2?3 MFC pi- 3? MBC3 MBC pi//$#7%; IOSBP DFC 7SBP
(2pe? 10SBP INSL$; 2MFC pm%:; 10SBP INS8$ 1ISBP INC}
(TRA SAX MFC pe?; pl? MFC CPC TRA DFC SAX;)
33BP (2pe? 2MFC SSV ASBP 2MFL 1O0EXC INC MFL .
TOEXC kINC MFI, kMFL IOEXC INC; MFL:))

TRA 2DFC MON pm?:3)

LSBP MM LSRP “ODFL 7SBP DFL:):)
85SBP DFL 9SBP DFLi I10SBP DFL 11SBP DFL 2SBP)#

Sk

(Initialize buffers 8 to 11. Asterisks are used to mark the lists
currently being compared, as already detailed in '"check format".
Insert ** in list of regular correspondences. Go to master file.
(Insert **, Have we done all pairs of lists? Yes, exit;
(Bet Aux at first *. Advance the second *, Is it to end?
Yes, delete it, Find first *, delete it, advance to next linej
No. Save mnemonics of lists being compared into results buffer.
Extract an al ternated list of the current two lists into 6.
(Advance to next pair of words, More in file?
(Are the forms cognate? Move past cognate set identifiers.
(fuve character from first list., Is it CRLF?
Yes. save CRLF from second list. Do not advance pointers;
No, save character from second list. Advance ptrs:);):;)
Extract the list of regulercorrespondences for the two lists into 7.
(Set Aux to first *, Advance second *, End of mnemonics?
Yes, delete second *, delete first * and insert ** in
next position:; No., Advance BP one character past first *
to counteract having to move forward an extra character

past -the sccond *, : _
(Advance to next correspondence set. More in file?
Save the correspondence for the two lists:;))
Initialize the results buffer.
Go to the alternated list in 6 and tabulate the results.,
((End of a word? (Check the flag in 11 for any irregulars.
Advance to proper column in results table) Count the word;

Does the corresponderce contain - or //? No comparison;

Initialize the MFC subroutine in buffer 120, See if the

current corresp ondehce is in the list of regular

correspondences in buffer 7. ' '
(Is it this correspondence? Yes, set buf 10 to LMFC;
No, Advance to next regular correspondence. More?:}
It is an irregular correspondence, Set buf 10 to 8MFC.
Increment the flag in buffer 11,)
(The degrees of difference is.a triangle matrix--that is,

% the second character in the entry is always equal to or
lexically greater tnan the first character, Thus the
current correspoidence must be checked., If the first
character is lexically greater than the second, the
characters must be cwapped..

Find the cuvrrent correspordence in the degrees. of

difference table. - S

(Found? Incrementcorrcﬂncﬂcegﬁgnt, Increment sum of
d. of d. count. Gc to line for k d. of d. and increment.
In 21l cases, the 4MFC or 8MFC in buf 10 is executed
to increment the proper column in the tablej
No’, found, move to next entry in d, of d. table:))
Delete the current correspondence and-advance to next. More?:3)
Display results in immediate mode. On return to program node,
delete results in buf 4 and list of regular corr's in 7:):)
Clear buffers 8 through 11. Display merged master list.)

-

-

REFERENCES

Carroll, John B. Isidore Dyen. 1962. High speed conputation of
lexicostatistical indices. Language 38:274-78.

Frantz, Donald G. I970. A PL/I program to assist the comparative
linguist. Communications of the ACM 13:353=6,

Grimes, Joseph E. 196k, Meaavres of linguistic divergence.
Proceedings of the ninth international congress of linguists,
edited by H.G, Lunt., The Hague: Mouton. pp. 44-50,

and Frederick Agard. 1959. ILinguistic divergence in
Romance., Language 35:598-60k,

Keesing, Roger and J. Fifi'i. 1969. Kwaio word tabooing in its
cultural context. Journal of the Polynesian Society 78:154=77.

Ladefoged, Peter. I968. The measurement of eross-language
communication. Uganda language survey working paper.
Educational resources information center document ED 024 920
(AL 001 284). Washington: United States Office of Health,
Education and Welfare.

McKaughan, Howard. 1964. A study o7 divergence in four New
Guinea languages. American Anthropologist 66:98-120.

Sanders, Arden G. 1977. Guidelines for conducting a lexico-
statistic survey in Papua New Guinea. In Language Variation
and survey techniques, Workpapers in Papua New Guinea
languages, Vol. 21. Ukarumpa, E.H.P.: Summer Institute of
Linguistics. pp. 2I-41. :

Simons, Gary. 1977. A usmer's manual for PIP-~the Programmable
Text Processor. Working papers for the language variation and
limits to communication project, Number 1. Ithaca, NY:
Cornell University.

. 1977a. Phonostatistic methods. Workpapers in Papua
New Guinea languages 21:155-185,

. 1977b. Recognizing patterns of divergence and convergence
in a matrix of lexicostatistic relations. Workpapers in
Papua New Guinea languages 21:107-13k4.

and Linda Simons. 1977. A vocabulary of Biljiau, an
Austrone™ian language of New Guinea, with notes on its
development from Proto Oceanic. Working Papers for the
language variation and limits to communication project, Number 2.

